Skip to main content
Log in

A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface

  • Original Paper
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A hybrid method combining large eddy simulation (LES) with the Reynolds-averaged Navier-Stokes (RANS) equation is used to simulate a turbulent channel flow at high Reynolds number. It is known that the mean velocity profile has a mismatch between the RANS and LES regions in hybrid simulations of a channel flow. The velocity mismatch is reproduced and its dependence on the location of the RANS/LES interface and on the type of RANS model is examined in order to better understand its properties. To remove the mismatch and to obtain better velocity profiles, additional filtering is applied to the velocity components in the wall-parallel planes near the interface. The additional filtering was previously introduced to simulate a channel flow at low Reynolds number. It is shown that the filtering is effective in reducing the mismatch even at high Reynolds number. Profiles of the velocity fluctuations of runs with and without the additional filtering are examined to help understand the reason for the mismatch. Due to the additional filtering, the wall-normal velocity fluctuation increases at the bottom of the LES region. The resulting velocity field creates the grid-scale shear stress more efficiently, and an overestimate of the velocity gradient is removed. The dependence of the velocity profile on the grid point number is also investigated. It is found that the velocity gradient in the core region is underestimated in the case of a coarse grid. Attention should be paid not only to the velocity mismatch near the interface but also to the velocity profile in the core region in hybrid simulations of a channel flow at high Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Proc. First AFOSR International Conference on DNS/LES. pp. 137–147 (1997)

  2. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  MATH  ADS  Google Scholar 

  3. Schumann, U.: Subgrid scale model for finite difference simulation of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Moeng, C.H.: A large eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984)

    Article  ADS  Google Scholar 

  5. Piomelli, U., Ferziger, J., Moin, P., Kim, J.: New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A 1, 1061–1068 (1989)

    Article  ADS  Google Scholar 

  6. Nicoud, F., Baggett, J.S., Moin, P., Cabot, W.: Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Phys. Fluids 13, 2968–2984 (2001)

    Article  ADS  Google Scholar 

  7. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale 1, 5–21 (1994)

    Google Scholar 

  8. Georgiadis, N.J., Alexander, J.I.D., Reshotko, E.: Hybrid Reynolds-averaged Navier-Stokes/large eddy simulations of supersonic turbulent mixing. AIAA J. 41, 218–229 (2003)

    ADS  Google Scholar 

  9. Kawai, S., Fujii, K.: Computational study of a supersonic base flow using hybrid turbulence methodology. AIAA J. 43, 1265–1275 (2005)

    Google Scholar 

  10. Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: a one-equation SGS model combined with a k–ω model for predicting recirculating flows. Int. J. Numer. Meth. Fluids 43, 1003–1018 (2003)

    Article  MATH  Google Scholar 

  11. Tucker, P.G., Davidson, L.: Zonal kl based large eddy simulations. Comput. Fluids 33, 267–287 (2004)

    Article  MATH  Google Scholar 

  12. Hamba, F.: A hybrid RANS/LES simulation of turbulent channel flow. Theoret. Comput. Fluid Dynamics 16, 387–403 (2003)

    Article  MATH  Google Scholar 

  13. Strelets, M.: Detached eddy simulation of massively separated flows. AIAA Paper 2001-0879 (2001)

  14. Squires, K.D., Forsythe, J.R., Morton, S.A., Strang, W.Z., Wurtzler, K.E., Tomaro, R.F., Grismer, M.J., Spalart, P.R.: Progress on detached-eddy simulation of massively separated flows. AIAA Paper 2002-1021 (2002)

  15. Forsythe, J.R., Hoffmann, K.A., Cummings. R.M., Squires, K.D.: Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow. J. Fluid Eng. 124, 911–923 (2002)

    Article  Google Scholar 

  16. Constantinescu, G., Squires, K.: Numerical investigation of flow over a sphere in the subcritical and supercritical regimes. Phys. Fluids 16, 1449–1466 (2004)

    Article  ADS  Google Scholar 

  17. Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  ADS  Google Scholar 

  18. Piomelli, U., Balaras, E., Pasinato, H., Squires, K. D., Spalart, P. R.: The inner–outer layer interface in large eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

    Article  Google Scholar 

  19. Hamba, F.: An attempt to combine large eddy simulation with the k–ε model in a channel-flow calculation. Theoret. Comput. Fluid Dyn. 14, 323–336 (2001)

    Article  MATH  ADS  Google Scholar 

  20. Temmerman, L., Hadžiabdić, M., Leschziner, M.A., Hanjalić, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)

    Article  Google Scholar 

  21. Prandtl, L.: Berichtüber untersuchungen zur ausgebildeten turbulenz. Z. angew. Math. Mech. 5, 136–139 (1925)

    MATH  Google Scholar 

  22. Hinze, J.O.: Turbulence. McGraw-Hill, New York, p.360 (1975)

    Google Scholar 

  23. Hamba, F.: Realizability for the Reynolds stress in nonlinear eddy-viscosity model of turbulence. J. Phys. Soc. Jpn. 70, 1565–1574 (2001)

    Article  ADS  Google Scholar 

  24. Abe, K.: A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model. Int. J. Heat Fluid Flow 26, 204–222 (2005)

    Article  Google Scholar 

  25. Fureby, C., Tabor, G.: Mathematical and physical constraints on large eddy simulations. Theoret. Comput. Fluid Dyn. 9, 85–102 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Fureby, C., Alin, N., Wikström, N., Menon, S., Svanstedt, N., Persson, L.: Large eddy simulation of high-Reynolds-number wall-bounded flows. AIAA J. 42, 457–468 (2004)

    Article  ADS  Google Scholar 

  27. Davidson, L., Billson, M.: Hybrid LES-RANS using synthesized turbulence for forcing at the interface. In: Neittaanmäki, P. et al. (eds.) Proc. European Congress on Computational Methods in Applied Sciences and Engineering 2004, Jyväskylä (2004)

  28. Hamba, F.: Nonlocal expression for scalar flux in turbulent shear flow. Phys. Fluids 16, 1493–1508 (2004)

    Article  ADS  Google Scholar 

  29. Johansson, A.V., Alfredsson, P.H.: Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows. J. Fluid Mech. 137, 409–421 (1983)

    Article  ADS  Google Scholar 

  30. Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ=1020 with Pr=0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)

    Article  Google Scholar 

  31. Germano, M.: Properties of the hybrid RANS/LES filter. Theoret. Comput. Fluid Dyn. 17, 225–231 (2004)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujihiro Hamba.

Additional information

PACS47.27.Eq; 47.27.Nz; 47.60.+i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamba, F. A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface. Theor. Comput. Fluid Dyn. 20, 89–101 (2006). https://doi.org/10.1007/s00162-006-0009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0009-y

Keywords

Navigation