Skip to main content
Log in

A non-oscillatory balanced scheme for an idealized tropical climate model

Part I: Algorithm and validation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We propose a non-oscillatory balanced numerical scheme for a simplified tropical climate model with a crude vertical resolution, reduced to the barotropic and the first baroclinic modes. The two modes exchange energy through highly nonlinear interaction terms. We consider a periodic channel domain, oriented zonally and centered around the equator and adopt a fractional stepping–splitting strategy, for the governing system of equations, dividing it into three natural pieces which independently preserve energy. We obtain a scheme which preserves geostrophic steady states with minimal ad hoc dissipation by using state of the art numerical methods for each piece: The f-wave algorithm for conservation laws with varying flux functions and source terms of Bale et al. (2002) for the advected baroclinic waves and the Riemann solver-free non-oscillatory central scheme of Levy and Tadmor (1997) for the barotropic-dispersive waves. Unlike the traditional use of a time splitting procedure for conservation laws with source terms (here, the Coriolis forces), the class of balanced schemes to which the f-wave algorithm belongs are able to preserve exactly, to the machine precision, hydrostatic (geostrophic) numerical-steady states. The interaction terms are gathered into a single second order accurate predictor-corrector scheme to minimize energy leakage. Validation tests utilizing known exact solutions consisting of baroclinic Kelvin, Yanai, and equatorial Rossby waves and barotropic Rossby wave packets are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    MathSciNet  ADS  Google Scholar 

  2. Biello, J., Majda, A.: Boundary layer dissipation and the nonlinear interaction of equatorial baroclinic barotropic Rossby waves. Geophysical and Astrophysical Fluid Dynamics 98, 85–127 (2004)

    Google Scholar 

  3. Webster, P.: Response of the tropical atmosphere to local steady forcing. Mon. Wea. Rev. 100, 518–541 (1972)

    Article  ADS  Google Scholar 

  4. Webster, P.: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci. 38, 554–571 (1981)

    Article  ADS  Google Scholar 

  5. Webster, P.: Seasonality in the local and remote atmospheric response to sea surface temperature anomalies. J. Atmos. Sci. 39, 41–52 (1982)

    ADS  Google Scholar 

  6. Kasahara, A., Silva Dias, P.: Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci. 43, 1893–1911 (1986)

    Article  ADS  Google Scholar 

  7. Hoskins, B., Jin, F.-F.: The initial value problem for tropical perturbations to a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc. 117, 299–317 (1991)

    Article  ADS  Google Scholar 

  8. Wang, B., Xie, X.: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci. 53, 449–467 (1996)

    MathSciNet  ADS  Google Scholar 

  9. Chiang, J., Sobel, A.: Tropical tropospheric temperature variations caused by enso and their influence on the remote tropical climate. J. Atmos. Sci. 15, 2616–2631 (2002)

    Google Scholar 

  10. Emanuel, K.: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci. 44, 2324–2340 (1987)

    ADS  Google Scholar 

  11. Neelin, D., Held, I., Cook, K.: Evaporation-wind feedback and low frequency variability in the tropical atmosphere. J. Atmos. Sci. 44, 2341–2348 (1987)

    Article  ADS  Google Scholar 

  12. Goswami, P., Goswami, B.: Modification of n = 0 equatorial waves due to interaction between convection and dynamics. J. Atmos. Sci. 48, 2231–2244 (1991)

    Article  ADS  Google Scholar 

  13. Yano, J.-I., Emanuel, K.: An improved model of the equatorial troposphere and its coupling to the stratosphere. J. Atmos. Sci. 377–389 (1991)

  14. Neelin, D., Yu, J.: Modes of tropical variability under convective adjustment and the Madden-Julian Oscillation. Part I: Analytical theory. J. Atmos. Sci. 51, 1876–1894 (1994)

    Article  ADS  Google Scholar 

  15. Majda, A., Shefter, M.: Waves and instabilities for model tropical convective parametrizations. J. Atmos. Sci. 58, 896–914 (2001)

    MathSciNet  ADS  Google Scholar 

  16. Lin, W.-B., Neelin, D., Zeng, N.: Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci. 57, 2793–2823 (2000)

    ADS  Google Scholar 

  17. Neelin, D., Zeng, N.: A quasi-equilibrium tropical circulation model–formulation. J. Atmos. Sci. 57, 1741–1766 (2000)

    Article  ADS  Google Scholar 

  18. Yano, J.-I., Moncrieff, M., McWilliams, J.: Linear stability and single-column analyses of several cumulus parametrization categories in a shallow-water model. Quart. J. Roy. Meteor. Soc. 124, 983–1005 (1998)

    Article  ADS  Google Scholar 

  19. Gill, A.: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30. Academic Press (1982)

  20. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, Vol. 9. Amer. Mat. Soc. (2003)

  21. Wheeler, M., Kiladis, G.: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999)

    Article  ADS  Google Scholar 

  22. Sobel, A., Nilsson, J., Polvani, M.: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665 (2001)

    Article  ADS  Google Scholar 

  23. Majda, A., Klein, R.: Systematic multiscale models for the tropics. J. Atmos. Sci. 60, 393–408 (2003)

    ADS  Google Scholar 

  24. Frierson, D., Majda, A., Pauluis, O.: Dynamics of precipitation fronts in the tropical atmosphere. Comm. Math. Sciences, 2, No.4 (2004)

    Google Scholar 

  25. Bale, D., LeVeque, R., Mitran, S., Rossmanith, J.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM Jour. Sci. Comput. 24, 955–978 (2002)

    MathSciNet  MATH  Google Scholar 

  26. LeVeque, R.: Balancing source terms and flux gradients in high-order Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  27. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Jour. Sci. Comput. 25, 2050–2065 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Bouchut, F., Le Sommer, J., Zeitlin, V.: Frontal geostrophic adjustment and nonlinear wave phenomena in one dim rotating shallow water: part 2: high resolution numerical simulations. J. Fluid Mech. in press (2004)

  29. Levy, D., Tadmor, E.: Non-oscillatory central schemes for the incompressible 2-D Euler equations. Mathematical Research Letters 4, 1–20 (1997)

    Google Scholar 

  30. Kupferman, R., Tadmor, E.: A fast, high resolution, second-order central scheme for incompressible flows. Proc. Nat. Acad. Sci. 94, 4848–4852 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Durran, D.: Numerical Methods for Wave Equations in Geophesical Fluid Dynamics. Springer-Verlag, NY (1999)

  32. Evans, L.: Partial differential equations, Graduate Studies in Mathematics, Vol. 19, Amer. Math. Soc. (1998)

  33. Zhang, Z.-C., John Yu, S.: A non oscillatory central scheme for conservation laws. In: AIAA Fluid Dynamics Conference, 30th, June 28–July 1, AIAA-1999-3576 Norfolk, VA (1999)

  34. Biello, J., Majda, A.: The effect of meridional and vertical shear on the interaction of equatorial baroclinic and barotropic Rossby waves. Studies in App. Math. 112, 341–390 (2003)

    MathSciNet  Google Scholar 

  35. LeVeque, R.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boualem Khouider.

Additional information

Communicated by R. Klein

PACS 02.70.Bf; 02.30.Jr; 92.60.Bh; 92.60.Dj; 92.60.Jq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khouider, B., Majda, A.J. A non-oscillatory balanced scheme for an idealized tropical climate model. Theor. Comput. Fluid Dyn. 19, 331–354 (2005). https://doi.org/10.1007/s00162-005-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-005-0170-8

Keywords

Navigation