Skip to main content
Log in

Investigation of downstream and sideline subsonic jet noise using Large Eddy Simulation

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The sound fields radiated by Mach number 0.6 and 0.9, circular jets with Reynolds numbers varying from 1.7×103 to 4×105 are investigated using Large Eddy Simulations. As the Reynolds number decreases, the properties of the sound radiation do not change significantly in the downstream direction, whereas they are modified in the sideline direction. At low Reynolds numbers, for large angles downstream from the jet axis, the acoustic levels are indeed remarkably lower and a large high-frequency part of the sound spectra vanishes. For all Reynolds numbers, the downstream and the sideline sound spectra both appear to scale in frequency with the Strouhal number. However their peak amplitudes vary following two different velocity exponents according to the radiation direction. The present observations suggest the presence of two sound sources: a Reynolds number-dependent source, predominant for large radiation angles, connected to the randomly-developing turbulence, and a deterministic source, radiating downstream, related to a mechanism intrinsic to the jet geometry, which is still to be comprehensively described. This view agrees well with the experimental results displaying two distinguishable components in turbulent mixing noise [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mollo-Christensen, E., Kolpin, M.A., Martucelli, J.R.: Experiments on jet flows and jet noise far-field spectra and directivity patterns. J. Fluid Mech. 18, 285–301 (1964)

    Article  ADS  Google Scholar 

  2. Tam, C.K.W., Golebiowski, M., Seiner, J.M.: On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 96–1716 (1996)

  3. Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 17–43 (1995)

    Article  ADS  Google Scholar 

  4. Tam, C.K.W.: Jet noise: since 1952. Theoret. Comput. Fluid Dynamics 10, 393–405 (1998)

    Article  MATH  ADS  Google Scholar 

  5. Lilley, G.M.: Jet noise classical theory and experiments. In: Aeroacoustics of Flight Vehicles, H.H. Hubbard (ed.), Vol. 1: Noise Sources, 211–289 (1994)

  6. Viswanathan, K.: Analysis of the two similarity components of turbulent mixing noise. AIAA Journal 40(9), 1735–1744 (2002)

    MathSciNet  ADS  Google Scholar 

  7. Viswanathan, K.: Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82 (2004)

    Article  MATH  ADS  Google Scholar 

  8. Cooper, A.J., Crighton, D.G.: Global modes and superdirective acoustic radiation in low-speed axisymmetric jets, Eur. J. Mech. B-Fluids 19, 559–574 (2000)

    MATH  Google Scholar 

  9. Goldstein, M.E., Leib, S.J.: The role of instability waves in predicting jet noise. J. Fluid Mech. 525, 37–72 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Viswanathan, K.: Jet aeroacoustic testing: issues and implications. AIAA Journal 41(9), 1674–1689 (2003)

    ADS  Google Scholar 

  11. Zaman, K.B.M.Q., Yu, J.C.: Power spectral density of subsonic jet noise. J. Sound Vib. 98(4), 519–537 (1985)

    Article  ADS  Google Scholar 

  12. Crighton, D.G.: Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106, 261–298 (1981)

    Article  MATH  ADS  Google Scholar 

  13. Lush, P.A.: Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech. 46(3), 477–500 (1971)

    Article  ADS  Google Scholar 

  14. Ahuja, K.K.: Correlation and prediction of jet noise. J. Sound Vib. 29(2), 155–168 (1973)

    Article  ADS  Google Scholar 

  15. Tanna, H.K.: An experimental study of jet noise. Part I: Turbulent mixing noise. J. Sound Vib. 50(3), 405–428 (1977)

    Google Scholar 

  16. Stromberg, J.L., McLaughlin, D.K., Troutt, T.R.: Flow field and acoustic properties of a Mach number 0.9 jet at a low Reynolds number. J. Sound. Vib. 72(2), 159–176 (1980)

    Article  ADS  Google Scholar 

  17. Long, D.F., Arndt, R.E.A: Jet noise at low Reynolds number. AIAA Journal 22(2), 187–193 (1984)

    ADS  Google Scholar 

  18. Morrison G.L., McLaughlin, D.K.: Noise generation by instabilities in low Reynolds number supersonic jets. J. Sound Vib. 65(2), 177–191 (1979)

    Article  ADS  Google Scholar 

  19. Freund, J.B.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  ADS  Google Scholar 

  20. Bogey, C., Bailly, C., Juvé, D.: Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES. Theoret. Comput. Fluid Dynamics 16(4), 273–297 (2003)

    Article  MATH  ADS  Google Scholar 

  21. Bogey, C., Bailly, C.: Computation of a high Reynolds number jet and its radiated noise using LES based on explicit filtering. Computers and Fluids (2006)

  22. Bogey, C., Bailly, C.: Effects of inflow conditions and forcing on subsonic jet flows and noise. AIAA Journal 43(5), 1000–1007 (2005)

    ADS  Google Scholar 

  23. Bogey, C., Bailly, C.: Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling. AIAA Journal 43(2), 437–439 (2005)

    ADS  Google Scholar 

  24. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004)

    Article  MATH  ADS  Google Scholar 

  25. Rizzetta, D.P., Visbal, M.R., Blaisdell, G.A.: A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation. Int. J. Num. Meth. Fluids 42(6), 665–693 (2003)

    Article  MATH  Google Scholar 

  26. Bogey, C., Bailly, C.: Three-dimensional non reflective boundary conditions for acoustic simulations: far-field formulation and validation test cases. Acta Acustica 88(4), 463–471 (2002)

    Google Scholar 

  27. Zaman, K.B.M.Q.: Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152, 83–111 (1985)

    Article  ADS  Google Scholar 

  28. Zaman, K.B.M.Q.: Flow field and near and far sound field of a subsonic jet. J. Sound Vib. 106(1), 1–16 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ukeiley, L.S., Ponton, M.K.: On the near field pressure of a transonic axisymmetric jet. Int. J. of Aeroacoustics 3(1), 43–66 (2004)

    Article  Google Scholar 

  30. Arndt, R.E.A, Long, D.F., Glauser, M.N.: The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 1–33 (1997)

    Article  ADS  Google Scholar 

  31. Pierce A.D: Acoustics-An introduction to its physical principles and applications. Acoustical society of America, Woodbury, NY, 517–519 (1989)

  32. Michalke, A.: Survey on jet instability theory. Prog. Aerospace Sci. 21, 159–199 (1984)

    Article  ADS  Google Scholar 

  33. Lau, J.C.: Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets. J. Fluid Mech. 105, 193–218 (1981)

    Article  ADS  Google Scholar 

  34. Bogey, C., Bailly, C.: Large Eddy Simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. Fourth International Symposium on Turbulence and Shear Flow Phenomena 2, 817–822 (2005). To appear in Int. J. Heat Fluid Flow (2006).

  35. Maestrello, L.: Two points correlations of sound pressure in the far field of a jet: Experiment. NASA-TMX-72835 (1976)

  36. Juvé, D., Sunyach, M.: Structure azimutale du champ acoustique lointain d'un jet subsonique. C. R. Acad. Sc. Paris, t. 287, série B, 187–90 (1978) (in french)

  37. Tam, C.K.W., Auriault, L.: Jet mixing noise from fine-scale turbulence. AIAA Journal 37(2), 145–155 (1999)

    ADS  Google Scholar 

  38. Morris, P.J., Farassat, F.: Acoustic analogy and alternative theories for jet noise prediction. AIAA Journal 40(4), 671–680 (2002)

    Article  ADS  Google Scholar 

  39. Golsdtein, M.E.: Ninety-degree acoustic spectrum of a high-speed air jet. AIAA Journal 43(1), 96–102 (2005)

    Article  ADS  Google Scholar 

  40. Hileman, J., Samimy, M.: Turbulence structures and the acoustic far field of a Mach 1.3 jet. AIAA Journal 39(9), 1716–1727 (2001)

    ADS  Google Scholar 

  41. Juvé, D., Sunyach, M., Comte-Bellot, G.: Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71, 319–32 (1980)

    Article  ADS  Google Scholar 

  42. Schaffar, M.: Direct measurements of the correlation between axial in-jet velocity fluctuations and far field noise near the axis of a cold jet. J. Sound Vib. 64(1), 73–83 (1979)

    Article  ADS  Google Scholar 

  43. Panda, J., Seasholtz, R.G.: Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97–130 (2002)

    Article  MATH  ADS  Google Scholar 

  44. Panda, J., Seasholtz, R.G., Elam, K.A.: Further progress in noise source identification in high-speed jets via causality principle. AIAA Paper 2003–3126 (2003)

  45. Bogey, C., Bailly, C.: Investigation of sound sources in subsonic jets using causality methods on LES data. AIAA Paper 2005–2885 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Bogey.

Additional information

Communicated by T. Colonius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogey, C., Bailly, C. Investigation of downstream and sideline subsonic jet noise using Large Eddy Simulation. Theor. Comput. Fluid Dyn. 20, 23–40 (2006). https://doi.org/10.1007/s00162-005-0005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-005-0005-7

Navigation