Skip to main content
Log in

Competition of spiral waves with anomalous dispersion in Couette–Taylor flow

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We have investigated the generation of spiral waves in a Couette–Taylor system between counter rotating cylinders and found that for small supercriticality, the competition of spirals propagating in opposite directions along the axis of cylinders results in a formation of a localized source. Measuring the group velocity as a function of the amplitude, we have determined that these spirals have anomalous dispersion, in the sense that the phase and group velocity of each have opposite signs. The coupled complex Ginzburg–Landau equations offer a good theoretical framework to explain these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, M.C., Hohenberg, P.: Pattern formation outside equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Google Scholar 

  2. Garnier, N., Chiffaudel, A.: Nonlinear transport to a global mode for travelling-wave instability in a finite box. Phys. Rev. Lett. 86(1), 75 (2001)

    Google Scholar 

  3. Pastur, L., Westra, M.T., van de Water, W.: Sources and sinks in 1D travelling wave experiment. Physica D 174, 71 (2003)

    Google Scholar 

  4. Kolodner, P.: Extended states of nonlinear traveling-wave convection I: The Eckhaus instability. Phys. Rev. A 46, 6452 (1992)

    Google Scholar 

  5. Bot, P., Mutabazi, I.: Dynamics of spatio–temporal defects in the Taylor–Dean system. Eur. Phys. J. B 13, 141 (2000)

    Google Scholar 

  6. Mutabazi, I., Hegseth, J.J., Andereck, C.D., Wesfreid, J.E.: Spatio-temporal modulation in the Taylor-Dean system. Phys. Rev. Lett. 64, 1729 (1990)

    Google Scholar 

  7. Coullet, P., Frish, T., Plaza, F.: Sources and sinks of wave patterns. Physica D 62, 75 (1993)

    Google Scholar 

  8. van Hecke, M., Storm, C., van Saarloos, W.: Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems. Physica D 134, 1 (1999)

    Google Scholar 

  9. Burguette, J., Chate, H., Daviaud, F., Mukolowiez, N.: Bekki–Nozaki amplitude holes in hydrothermal nonlinear waves. Phys. Rev. Lett. 82, 3252 (1999). See also Chaté, H.: Nonlinearity 7, 185 (1994)

    Google Scholar 

  10. Chaté, H.: Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg–Landau equation. Nonlinearity 7, 185 (1999)

    Google Scholar 

  11. Potapov, A.I., Ostrovsky, L.A.: Modulated waves. Theory and applications. John Hopkins Univ. Press, Baltimore–London (1999)

  12. Kolodner, P.: Neutrally stable fronts of slow convective traveling waves. Phys. Rev. A 42, 2475 (1990)

    Google Scholar 

  13. Andereck, C.D., Liu, S.S., Swinney, H.L.: Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155 (1986)

    Google Scholar 

  14. Matisse, P., Gorman, M.: Neutrally buoyant anisotropic particles for flow visualization. Phys. Fluids 27(4), 759 (1984)

    Google Scholar 

  15. Domnguez-Lerma, M.A., Ahlers, G., Cannell, D.S.: Effects of Kalliroscope flow visualization particles on rotating Couette–Taylor flow. Phys. Fluids 28(4), 1204 (1985)

    Google Scholar 

  16. Lim, T.T., Tan, K.S.: A note on power-law scaling in a Taylor–Couette flow. Phys. Fluids 16(1), 140 (2004)

    Google Scholar 

  17. Tagg, R.: A guide to literature related to the Taylor–Couette problem. In: Ordered and Turbulent Patterns in Taylor–Couette Flow, C.D. Andereck and F. Hayot (Eds.), Plenum Press, NY (1992)

  18. Tagg, R., Edwards, W.S., Swinney, H.L., Marcus, P.S.: Nonlinear standing waves in Couette–Taylor flow. Phys. Rev. A 39, 3734 (1989). See also Tagg, R.: The Couette–Taylor problem. Nonlinear Science Today 4(3), 1 (1994)

    Google Scholar 

  19. Zaleski, S., Tabeling, P., Lallemand, P.: Flow structures and wave-number selection in spiraling vortex flows. Phys. Rev. A 32(1), 655 (1985)

    Google Scholar 

  20. Tag, R.: The Coutte–Taylor problem. Nonlinear Science Today 4(3), 1 (1994)

    Google Scholar 

  21. Chossat, P., Iooss, G.: The Couette–Taylor problem. Springer Verlag, NY (1994)

  22. Demay, Y., Iooss, G.: Calcul des solutions bifurquées pour le problème de Couette–Taylor avec les deux cylindres en rotation. J. Méca. Théo. App. Volume spécial “Bifurcations et comportements chaotiques”, pp. 193–216 (1985)

  23. Langford, W.F., Tagg, R., Kostelich, E.J., Swinney, H.L., Golubitsky, M.: Primary instabilities and bicriticality in flow between counter-rotating cylinders. Phys. Fluids 31(4), 776 (1988)

    Google Scholar 

  24. Antonijoan, J., Marques, F., Sanchez, J.: Non-linear spiral in the Taylor–Couette problem. Phys. Fluids 10(4), 829 (1998)

    Google Scholar 

  25. Edwards, W.S.: Linear spirals in the finite Couette–Taylor problem. In: Instability and Transition, Vol II, M.Y. Hussaini and R.G. Voigt (Eds.), Springer-Verlag, NY, pp. 408 (1990)

  26. Walgraef, D.: Spatio-temporal pattern formation, Springer, Paris (1997)

  27. Kuramoto, Y.: Chemical oscillations, waves and turbulence, Springer-Verlag, Berlin (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Crumeyrolle.

Additional information

Communicated by

H.J.S. Fernando

PACS

47.20.Ft, 47.35.+i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezersky, A., Latrache, N., Crumeyrolle, O. et al. Competition of spiral waves with anomalous dispersion in Couette–Taylor flow. Theor. Comput. Fluid Dyn. 18, 85–95 (2004). https://doi.org/10.1007/s00162-004-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-004-0139-z

Keywords

Navigation