Skip to main content
Log in

Constitutive equations for turbulent flows

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This review is intended to provide both the specialist and non-specialist in the field of turbulence with a continuum mechanics perspective on developing closure models needed in the description of turbulent flows. Modeling considerations applicable to isothermal, incompressible turbulent flows are discussed within the framework of Reynolds-averaged transport equations for the statistical moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astarita, G.: Objective and generally applicable criteria for flow classification. J. Non-Newtonian Fluid Mech. 6, 69–76 (1979)

  2. Chou, P.Y.: On velocity correlations and the solutions of the equations of turbulent fluctuation. Quart. Appl. Maths. 3, 38–54 (1945)

  3. Cormack, D.E., Leal, L.G., Seinfeld, J.H.: An evaluation of mean Reynolds stress turbulence models: The triple velocity correlation. J. Fluid Engrg. 100, 47–54 (1978)

  4. Craft, T.J., Launder, B.E.: A Reynolds stress closure designed for complex geometries. Int. J. Heat and Fluid Flow 17, 245–254 (1996)

  5. Craft, T.J., Launder, B.E.: Closure modelling near the two-component limit. In: Closure Strategies for Turbulent and Transitional Flows, B. Launder and N. Sandham (Eds.), pp. 102–126. Cambridge University Press (2002)

  6. Craft, T.J., Launder, B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat and Fluid Flow 17, 108–115 (1996)

  7. Crow, S.C.: Visco-elastic character of fine-grained isotropic turbulence. Phys. Fluids 10, 1587–1589 (1967)

  8. Crow, S.C.: Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech. 33, 1–20 (1968)

  9. Daly, B.J., Harlow, F.H.: Transport equations of turbulence. Phys. Fluids 13, 2634–2649 (1970)

  10. Drouot, R.: Définition d’un transport associé à un modè de fluide du deuxième ordre. comparison de diverses lois de comportement. C. R. Acad. Sc. Paris, Série A 282, 923–926 (1976)

  11. Durbin, P.A.: Near-wall turbulence closure modeling without ‘damping functions’. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)

  12. Durbin, P.A.: A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

  13. Fu, S., Launder, B.E., Tselepidakis, D.P.: Accommodating the effects of high strain rates in modelling the pressure-strain correlation. Technical Report TFD/87/5, UMIST (1987)

  14. Gatski, T.B., Jongen, T.: Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aerospace Sci. 36, 655–682 (2000)

  15. Gatski, T.B., Rumsey, C.L.. Linear and nonlinear eddy viscosity models. In: Closure Strategies for Turbulent and Transitional Flows, B. Launder and N. Sandham (Eds.), pp. 9–46. Cambridge University Press (2002)

  16. Gatski, T.B., Speziale, C.G.: On algebraic stress models for complex turbulent flows. J. Fluid. Mech. 254, 59–78 (1993)

  17. Gatski, T.B., Wallin, S.: Extending the weak-equilibrium condition for algebraic Reynolds stress models to rotating and curved flows. J. Fluid Mech. To appear (2004).

  18. Geurts, B.J.: Modern Simulation Strategies for Turbulent Flow. R.T. Edwards, Inc., Philadelphia (2001)

  19. Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid. Mech. 86, 491–511 (1978)

  20. Girimaji, S.S.: A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows. Phys. Fluids 9, 1067–1077 (1997)

  21. Hallbäck, M., Groth, J., Johansson, A.V.: An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closures. Phys. Fluids 2, 1859–1866 (1990)

  22. Hanjalić, K.: Advanced turbulence closure models: a view of current status and future prospects. Int. J. Heat Fluid Flow 15, 178–203 (1994)

  23. Hanjalić, K., Jakirlić, S.: Second-moment turbulence closure modelling. In: Closure Strategies for Turbulent and Transitional Flows, B. Launder and N. Sandham (Eds.), pp. 47–101. Cambridge University Press (2002)

  24. Hanjalić, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609–638 (1972)

  25. Hanjalic, K., Launder, B.E.: Contribution towards a Reynolds-stress closure for low-reynolds-number turbulence. J. Fluid Mech. 74, 593–610 (1976)

  26. Hellsten, A.: Curvature corrections for algebraic Reynolds stress modeling: A discussion. AIAA J. 40, 1909–1911 (2002)

  27. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)

  28. Johansson, A.V., Hallbäck, M.: Modelling of rapid pressure-strain in Reynolds-stress closures. J. Fluid Mech. 269, 143–168 (1994)

  29. Jongen, T., Gatski, T.B.: General explicit algebraic stress relations and best approximation for three-dimensional flows. Int. J. Engr. Sci. 36, 739–763 (1998)

  30. Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–186 (1987)

  31. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

  32. Launder, B.E., Sandham, N.: Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press, Cambridge (2001)

  33. Lumley, J.L.: Rational approach to relations between motions of differing scales in turbulent flows. Phys. Fluids 10, 1405–1408 (1967)

  34. Lumley, J.L.: Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413–434 (1970)

  35. Lumley, J.L.: Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–176 (1978)

  36. Lund, T.S., Novikov, E.A.: Parameterization of subgrid-scale stress by the velocity gradient tensor, 1992. Center for Turbulence Research Annual Research Briefs.

  37. Magnaudet, J.: Modelling of inhomogeneous turbulence in the absence of mean velocity gradients. Appl. Sci. Res. 51, 525–531 (1993)

  38. Manceau, R., Carlson, J.R., Gatski, T.B.: A rescaled elliptic relaxation approach: Neutralizing the effect on the log layer. Phys. Fluids 14, 3868–3879 (2002)

  39. Manceau, R., Hanjalić, K.: A new form of the elliptic relaxation equation to account for wall effects in RANS modeling. Phys. Fluids 12, 2345–2351 (2000)

  40. Mellor, G.L., Herring, H.J.: A survey of the mean turbulent field closure models. AIAA J. 11, 590–599 (1973)

  41. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys. Fluids 11, 943–945 (1999)

  42. Oberlack, M.: Non-isotropic dissipation in non-homogeneous turbulence. J. Fluid Mech. 350, 351–374 (1997)

  43. Pope, S.B.: A more general effective viscosity hypothesis. J. Fluid Mech. 72, 331–340 (1975)

  44. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

  45. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123–164 (1895)

  46. Reynolds, W.C.: Computation of Turbulent Flows8, pp. 183–208. Annual Review of Fluid Mechs., New York (1977)

  47. Rivlin, R.S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Quart. Appl. Math. 15, 212–215 (1957)

  48. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relations for isotropic materials. Arch. Rat. Mech. Anal. 4, 323–425 (1955)

  49. Rodi, W.: The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. PhD thesis, University of London, London (1972)

  50. Rodi, W.: A new algebraic relation for calculating the Reynolds stresses. ZAMM 56, 219–221 (1976)

  51. Rumsey, C.L., Gatski, T.B., Morrison, J.H.: Turbulence model predictions of strongly-curved flow in a U-duct. AIAA J. 38, 1394–1402 (2000)

  52. Schumann, U.: Realizability of Reynolds stress models. Phys. Fluids 20, 721–725 (1977)

  53. Schunk, P.R., Scriven, L.E.: Constitutive equation for modeling mixed extension and shear in polymer solution processing. J. Rheology 34, 1085–1119 (1990)

  54. Schwarz, W.R., Bradshaw, P.: Term-by-term tests of stress-transport turbulence models in a three-dimensional boundary layer. Phys. Fluids 6, 986–998 (1994)

  55. Shih, T.-H., Zhu, J., Lumley, J.L.: A new Reynolds stress algebraic equation model. Comput. Methods Appl. Mech. Engrg. 125, 287–302 (1995)

  56. Shir, C.C.: A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. J. Atmos. Sci. 30, 1327–1339 (1973)

  57. Sjögren, T., Johansson, A.V.: Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations. Phys. Fluids 12, 1554–1572 (2000)

  58. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Engng. Sci. 9, 899–916 (1971)

  59. So, R.M.C., Lai, Y.G., Zhang, H.S., Hwang, B.C.: Second-order near-wall turbulence closures: A review. AIAA J. 29, 1819–1835 (1991)

  60. Spencer, A.J.M.: Theory of Invariants, pp. 157–353. Academic Press, New York (1971)

  61. Speziale, C.G.: Invariance of turbulent closure models. Phys. Fluids 22, 1033–1037 (1979)

  62. Speziale, C.G.: Closure relations for the pressure-strain correlation of turbulence. Phys. Fluids 23, 459–463 (1980)

  63. Speziale, C.G.: On nonlinear k-l and k-ε models of turbulence. J. Fluid Mech. 178, 459–475 (1987)

  64. Speziale, C.G.: Turbulence modeling in noninertial frames of reference. Theor. Comput. Fluid Dyn. 1, 3–19 (1989)

  65. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence, volume 23, pp. 107–157. Annual Reviews, New York (1991)

  66. Speziale, C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51, 489–504 (1998)

  67. Speziale, C.G., Gatski, T.B.: Analysis and modelling of anisotropies in the dissipation rate of turbulence. J. Fluid Mech. 344, 155–180 (1997)

  68. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272 (1991)

  69. Straatman, A.G.: A modified model for diffusion in second-moment turbulence closures. J. Fluid Engrg. 121, 747–756 (1999)

  70. Taulbee, D.B., Sonnenmeier, J.R., Wall, K.M.: Stress relation for three-dimensional turbulent flows. Phys. Fluids 6, 1399–1401 (1994)

  71. Den Toonder, J.M.J., Kuiken, G.D.C., Nieuwstadt, F.T.M.: A criterion for identifying strong flow regions in turbulence. Eur. J. Mech., B/ Fluids 15, 735–753 (1996)

  72. Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

  73. Wallin, S., Johansson, A.V.: Modeling streamline curvature effects in explicit algebraic Reynolds stress turbulence models. Int. J. Heat and Fluid Flow 23, 721–730 (2002)

  74. Younis, B.A., Gatski, T.B., Speziale, C.G.: Towards a rational model for the triple velocity correlations of turbulence. Proc. R. Soc. Lond. A 456, 909–920 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.B. Gatski.

Additional information

Communicated by

M. Oberlack

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatski, T. Constitutive equations for turbulent flows. Theor. Comput. Fluid Dyn. 18, 345–369 (2004). https://doi.org/10.1007/s00162-004-0119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-004-0119-3

Keywords

Navigation