Advertisement

Continuum Mechanics and Thermodynamics

, Volume 8, Issue 4, pp 215–231 | Cite as

Original ArticleKinematic hardening rules in finite plasticity Part I: A constitutive approach

  • C. Tsakmakis

Plasticity laws exhibiting non-linear kinematichardening are considered within the framework of infinitesimal deformations. The evolution equations governing the response of kinematic hardening are derived as sufficient conditions in order for the intrinsic dissipation inequality to be satisfied in every process. With a view to the extension to finite deformations, two basic possibilities are proposed. In every case, an isotropic elasticity law with respect to the so-called plastic intermediate configuration is assumed to hold. The theory applicable to finite deformations is based on the concept of so-called dual variables and associated time derivatives. Thus, the main difference between the present work and other contributions in this area is the choice of the variables used to formulate the theory. In fact, using dual variables, hardening rules are derived as sufficient conditions for the intrinsic dissipation inequality to be satisfied in every process. This is quite analogous to the case of infinitesimal deformation, but now the hardening rules take a very specific form which is explained in the paper.

Keywords

Evolution Equation Specific Form Time Derivative Dual Variable Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • C. Tsakmakis
    • 1
  1. 1.Forschungszentrum Karlsruhe, Technik und Umwelt, Institut für Materialforschung II, Postfach 3640, D-76021 Karlsruhe, GermanyDE

Personalised recommendations