Skip to main content
Log in

Analytical modeling of the mixed-mode behavior in functionally graded coating/substrate systems

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This work aims at studying the interfacial behavior of functionally graded coatings (FGCs) on different substrates, here modeled as asymmetric double cantilever beams, in line with the experimental tests. An enhanced beam theory (EBT) is proposed to treat the mixed-mode phenomena in such specimens, whose interface is considered as an assembly of two components of the coating/substrate system bonded together partially by an elastic interface. This last one is modeled as a continuous distribution of elastic–brittle springs acting along the tangential and/or normal direction depending on the interfacial mixed-mode condition. Starting with the Timoshenko beam theory, we determine the differential equations of the problem directly expressed in terms of the unknown interfacial stresses, both in the normal and tangential directions. Different distribution laws are implemented to define the functional graduation of the material in the thickness direction of the specimens, whose variation is demonstrated numerically to affect both the local and global response in terms of interfacial stresses, internal actions, energy quantities and load–displacement curves. The good accuracy of the proposed method is verified against predictions by a classical single beam theory (SBT), with interesting results that could serve as reference solutions for more expensive experimental investigations on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Suresh, S.: Graded materials for resistance to contact deformation and damage. Science (80-.) 292, 2447–2451 (2001). https://doi.org/10.1126/science.1059716

    Article  ADS  Google Scholar 

  2. Zhang, Y., Kim, J.W.: Graded zirconia glass for resistance to veneer fracture. J. Dent. Res. 89, 1057–1062 (2010). https://doi.org/10.1177/0022034510375289

    Article  Google Scholar 

  3. Jørgensen, O., Giannakopoulos, A.E., Suresh, S.: Spherical indentation of composite laminates with controlled gradients in elastic anisotropy. Int. J. Solids Struct. 35, 5097–5113 (1998). https://doi.org/10.1016/S0020-7683(97)00209-6

    Article  Google Scholar 

  4. Suresh, S., Olsson, M., Giannakopoulos, A., Padture, N., Jitcharoen, J.: Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta Mater. 47, 3915–3926 (1999). https://doi.org/10.1016/S1359-6454(99)00205-0

    Article  ADS  Google Scholar 

  5. Pender, D.C., Padture, N.P., Giannakopoulos, A.E., Suresh, S.: Gradients in elastic modulus for improved contact-damage resistance. Part I: the silicon nitride-oxynitride glass system. Acta Mater. 49, 3255–3262 (2001). https://doi.org/10.1016/S1359-6454(01)00200-2

    Article  ADS  Google Scholar 

  6. Pender, D., Thompson, S., Padture, N., Giannakopoulos, A., Suresh, S.: Gradients in elastic modulus for improved contact-damage resistance. Part II: the silicon nitride-silicon carbide system. Acta Mater. 49, 3263–3268 (2001). https://doi.org/10.1016/S1359-6454(01)00201-4

    Article  ADS  Google Scholar 

  7. Vatulyan, A., Nesterov, S., Nedin, R.: Regarding some thermoelastic models of “coating-substrate’’ system deformation. Continuum Mech. Thermodyn. 32, 1173–1186 (2020). https://doi.org/10.1007/s00161-019-00824-9

    Article  ADS  MathSciNet  Google Scholar 

  8. Petrova, V., Schmauder, S.: Thermal fracture of functionally graded thermal barrier coatings with pre-existing edge cracks and multiple internal cracks imitating a curved interface. Continuum Mech. Thermodyn. 33, 1487–1503 (2021). https://doi.org/10.1007/s00161-021-00994-5

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, J., Zheng, W.: Elastoplastic buckling of FGM beams in thermal environment. Continuum Mech. Thermodyn. 33, 151–161 (2021). https://doi.org/10.1007/s00161-020-00895-z

    Article  ADS  MathSciNet  Google Scholar 

  10. Akbaş, ŞD., Ersoy, H., Akgöz, B., Civalek, Ö.: Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics 9(9), 1048 (2021). https://doi.org/10.3390/math9091048

    Article  Google Scholar 

  11. Salah, M., Matbuly, M.S., Civalek, O., Ragb, O.: Calculation of four-dimensional unsteady gas flow via different quadrature schemes and Runge-Kutta 4th order method. Adv. Appl. Math. Mech. 16(2), 437–458 (2021). https://doi.org/10.4208/aamm.OA-2021-0373

    Article  MathSciNet  Google Scholar 

  12. Vasiliev, A.S., Volkov, S.S., Kislyakov, E.A., Irkha, V.A.: Analytical expressions for the displacements of a surface of piezoelectric FGM-coated half-plane with a strip electrode. Continuum Mech. Thermodyn. 33, 1555–1566 (2021). https://doi.org/10.1007/s00161-021-00991-8

    Article  ADS  MathSciNet  Google Scholar 

  13. Malikan, M., Wiczenbach, T., Eremeyev, V.A.: Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect. Continuum Mech. Thermodyn. 34, 1051–1066 (2022). https://doi.org/10.4208/aamm.OA-2021-0373

    Article  ADS  MathSciNet  Google Scholar 

  14. Abouelregal, A.E., Akgoz, B., Civalek, Ö.: Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore–Gibson–Thompson equation. Comput. Mathem. Appl. 141, 102–115 (2023). https://doi.org/10.1016/j.camwa.2023.04.001

    Article  MathSciNet  Google Scholar 

  15. Kashtalyan, M., Menshykova, M.: Three-dimensional elastic deformation of a functionally graded coating/substrate system. Int. J. Solids Struct. 44, 5272–5288 (2007). https://doi.org/10.1016/j.ijsolstr.2006.12.035

    Article  Google Scholar 

  16. Chen, P., Chen, S.: Partial slip contact between a rigid punch with an arbitrary tip-shape and an elastic graded solid with a finite thickness. Mech. Mater. 59, 24–35 (2013). https://doi.org/10.1016/j.mechmat.2012.12.003

    Article  Google Scholar 

  17. Demirhan, N., Kanber, B.: Finite element analysis of frictional contacts of FGM coated elastic members. Mech. Based Des. Struct. Mach. 41, 383–398 (2013). https://doi.org/10.1080/15397734.2012.722882

    Article  Google Scholar 

  18. Jobin, K.J., Abhilash, M.N., Murthy, H.: A simplified analysis of 2D sliding frictional contact between rigid indenters and FGM coated substrates. Tribol. Int. 108, 174–185 (2017). https://doi.org/10.1016/j.triboint.2016.09.021

    Article  Google Scholar 

  19. Yilmaz, K.B., Comez, I., Yildirim, B., Güler, M.A., El-Borgi, S.: Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 141, 127–142 (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.041

    Article  Google Scholar 

  20. Chen, X.W., Yue, Z.Q.: Contact mechanics of two elastic spheres reinforced by functionally graded materials (FGM) thin coatings. Eng. Anal. Bound. Elem. 109, 57–69 (2019). https://doi.org/10.1016/j.enganabound.2019.09.009

    Article  MathSciNet  Google Scholar 

  21. Alinia, Y., Asiaee, A., Hosseini-nasab, M.: Stress analysis in rolling contact problem of a finite thickness FGM layer. Meccanica 54, 183–203 (2019). https://doi.org/10.1007/s11012-018-00925-w

    Article  MathSciNet  Google Scholar 

  22. Çömez, I., El-Borgi, S., Yildirim, B.: Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane. Arch. Appl. Mech. 90, 2113–2131 (2020). https://doi.org/10.1007/s00419-020-01712-4

    Article  ADS  Google Scholar 

  23. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41, 3865–3889 (2004). https://doi.org/10.1016/j.ijsolstr.2004.02.025

    Article  Google Scholar 

  24. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49, 161–182 (2007). https://doi.org/10.1016/j.ijmecsci.2006.08.006

    Article  Google Scholar 

  25. Ke, L.L., Wang, Y.S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A Solids 26, 171–188 (2007). https://doi.org/10.1016/j.euromechsol.2006.05.007

    Article  ADS  Google Scholar 

  26. Liu, T.J., Wang, Y.S., Zhang, C.: Axisymmetric frictionless contact of functionally graded materials. Arch. Appl. Mech. 78, 267–282 (2008). https://doi.org/10.1007/s00419-007-0160-y

    Article  ADS  Google Scholar 

  27. Dag, S., Guler, M.A., Yildirim, B., Cihan Ozatag, A.: Sliding frictional contact between a rigid punch and a laterally graded elastic medium. Int. J. Solids Struct. 46, 4038–4053 (2009). https://doi.org/10.1016/j.ijsolstr.2009.07.023

    Article  Google Scholar 

  28. Çömez, I.: Contact problem for a functionally graded layer indented by a moving punch. Int. J. Mech. Sci. 100, 339–344 (2015). https://doi.org/10.1016/j.ijmecsci.2015.07.006

    Article  Google Scholar 

  29. Chen, P., Chen, S., Peng, J.: Frictional contact of a rigid punch on an arbitrarily oriented gradient half-plane. Acta Mech. 226, 4207–4221 (2015). https://doi.org/10.1007/s00707-015-1457-5

    Article  MathSciNet  Google Scholar 

  30. Chen, P., Chen, S., Peng, J.: Sliding contact between a cylindrical punch and a graded half-plane with an arbitrary gradient direction. J. Appl. Mech. Trans. ASME 82, 1–10 (2015). https://doi.org/10.1115/1.4029781

    Article  ADS  Google Scholar 

  31. El-Borgi, S., Abdelmoula, R., Keer, L.: A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 43, 658–674 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.017

    Article  Google Scholar 

  32. El-Borgi, S., Usman, S., Güler, M.A.: A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 51, 4462–4476 (2014). https://doi.org/10.1016/j.ijsolstr.2014.09.017

    Article  Google Scholar 

  33. Aizikovich, S.M., Alexandrov, V.M., Kalker, J.J., Krenev, L.I., Trubchik, I.S.: Analytical solution of the spherical indentation problem for a half-space with gradients with the depth elastic properties. Int. J. Solids Struct. 39, 2745–2772 (2002). https://doi.org/10.1016/S0020-7683(02)00124-5

    Article  MathSciNet  Google Scholar 

  34. Aizikovich, S.M., Krenev, L.I., Trubchik, I.S.: The deformation of a half-space with a gradient elastic coating under arbitrary axisymmetric loading. J. Appl. Math. Mech. 72, 461–467 (2008). https://doi.org/10.1016/j.jappmathmech.2008.08.007

    Article  Google Scholar 

  35. Chen, Y.F., Erdogan, F.: The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. J. Mech. Phys. Solids 44, 771–787 (1996). https://doi.org/10.1016/0022-5096(96)00002-6

    Article  ADS  Google Scholar 

  36. Erdogan, F., Ozturk, M.: Periodic cracking of functionally graded coatings. Int. J. Eng. Sci. 33, 2179–2195 (1995). https://doi.org/10.1016/0020-7225(95)00065-6

    Article  MathSciNet  Google Scholar 

  37. El-Borgi, S., Erdogan, F., Hatira, F.: Ben Stress Intensity Factors for an Interface Crack between a Functionally Graded Coating and a Homogeneous Substrate. Int. J. Fract. 123, 139–162 (2003). https://doi.org/10.1023/B:FRAC.0000007373.29142.57

    Article  Google Scholar 

  38. Li, C., Weng, G.J.: Dynamic stress intensity factor of a cylindrical interface crack with a functionally graded interlayer. Mech. Mater. 33, 325–333 (2001). https://doi.org/10.1016/S0167-6636(01)00058-8

    Article  Google Scholar 

  39. Wang, B.L., Mai, Y.W., Noda, N.: Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. Int. J. Fract. 116, 161–177 (2002). https://doi.org/10.1023/A:1020137923576

    Article  Google Scholar 

  40. Li, X.F., Fan, T.Y.: Dynamic analysis of a crack in a functionally graded material sandwiched between two elastic layers under anti-plane loading. Compos. Struct. 79, 211–219 (2007). https://doi.org/10.1016/j.compstruct.2005.12.006

    Article  Google Scholar 

  41. Guo, L.C., Wang, Z.H., Zhang, L.: A fracture mechanics problem of a functionally graded layered structure with an arbitrarily oriented crack crossing the interface. Mech. Mater. 46, 69–82 (2012). https://doi.org/10.1016/j.mechmat.2011.10.007

    Article  Google Scholar 

  42. Anlas, G., Santare, M.H., Lambros, J.: Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 104, 131–143 (2000). https://doi.org/10.1023/A:1007652711735

    Article  Google Scholar 

  43. Shanmugavel, P., Bhaskar, G.B., Chandrasekaran, M., Mani, P.S., Srinivasan, S.P.: An overview of fracture analysis in functionally graded materials. Eur. J. Sci. Res. 68, 412–439 (2012)

    Google Scholar 

  44. Parameswaran, V., Shukla, A.: Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials. J. Appl. Mech. 69, 240–243 (2002). https://doi.org/10.1115/1.1459072

    Article  ADS  Google Scholar 

  45. Kim, J.H., Paulino, G.H.: T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Comput. Methods Appl. Mech. Eng. 192, 1463–1494 (2003). https://doi.org/10.1016/S0045-7825(02)00652-7

    Article  ADS  Google Scholar 

  46. Williams, J.G.: On the calculation of energy release rates for cracked laminates. Int. J. Fract. 36, 101–119 (1988). https://doi.org/10.1007/BF00017790

    Article  Google Scholar 

  47. Whitney, J.M., Browning, C.E., Hoogsteden, W.: A double cantilever beam test for characterizing mode I delamination of composite materials. J. Reinf. Plast. Compos. 1, 297–313 (1982). https://doi.org/10.1177/073168448200100402

    Article  ADS  Google Scholar 

  48. Sun, C.T., Zheng, S.: Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens. Compos. Sci. Technol. 56, 451–459 (1996). https://doi.org/10.1016/0266-3538(96)00001-2

    Article  Google Scholar 

  49. Sun, X., Tong, L., Wood, M.D.K., Mai, Y.W.: Effect of stitch distribution on mode I delamination toughness of laminated DCB specimens. Compos. Sci. Technol. 64, 967–981 (2004). https://doi.org/10.1016/j.compscitech.2003.07.004

    Article  Google Scholar 

  50. Kanninen, M.F.: An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 9, 83–92 (1973). https://doi.org/10.1007/BF00035958

    Article  Google Scholar 

  51. Foote, R.M.L., Buchwald, V.T.: An exact solution for the stress intensity factor for a double cantilever beam. Int. J. Fract. 29, 125–134 (1985). https://doi.org/10.1007/BF00034313

    Article  Google Scholar 

  52. Fichter, W.B.: The stress intensity factor for the double cantilever beam. Int. J. Fract. 22, 133–143 (1983). https://doi.org/10.1007/BF00942719

    Article  Google Scholar 

  53. Davidson, B.D.: An analytical investigation of delamination front curvature in double cantilever beam specimens. J. Compos. Mater. 24, 1124–1137 (1990). https://doi.org/10.1177/002199839002401101

    Article  ADS  Google Scholar 

  54. Nairn, J.A.: Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses. Int. J. Adhes. Adhes. 20, 59–70 (2000). https://doi.org/10.1016/S0143-7496(99)00016-0

    Article  Google Scholar 

  55. Guo, S., Dillard, D.A., Nairn, J.A.: Effect of residual stress on the energy release rate of wedge and DCB test specimens. Int. J. Adhes. Adhes. 26, 285–294 (2006). https://doi.org/10.1016/j.ijadhadh.2005.04.002

    Article  Google Scholar 

  56. Blackman, B.R., Hadavinia, H., Kinloch, A., Paraschi, M., Williams, J.: The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng. Fract. Mech. 70, 233–248 (2003). https://doi.org/10.1016/S0013-7944(02)00031-0

    Article  Google Scholar 

  57. Shahani, A.R., Forqani, M.: Static and dynamic fracture mechanics analysis of a DCB specimen considering shear deformation effects. Int. J. Solids Struct. 41, 3793–3807 (2004). https://doi.org/10.1016/j.ijsolstr.2004.02.039

    Article  Google Scholar 

  58. Sridhar, N., Massabò, R., Cox, B.N., Beyerlein, I.J.: Delamination dynamics in through-thickness reinforced laminates with application to DCB specimen. Int. J. Fract. 118, 119–144 (2002). https://doi.org/10.1023/A:1022884410968

    Article  Google Scholar 

  59. Shahani, A.R., Fasakhodi, M.R.A.: Analytical modelling of dynamic fracture and crack arrest in DCB specimens under fixed displacement conditions. Fatigue Fract. Eng. Mater. Struct. 33, 436–451 (2010). https://doi.org/10.1111/j.1460-2695.2010.01458.x

    Article  Google Scholar 

  60. Zhang, H., Li, X.F., Tang, G.J., Shen, Z.B.: Stress intensity factors of double cantilever nanobeams via gradient elasticity theory. Eng. Fract. Mech. 105, 58–64 (2013). https://doi.org/10.1016/j.engfracmech.2013.03.005

    Article  Google Scholar 

  61. Wang, H., Li, X., Tang, G., Shen, Z.: Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model. J. Nanosci. Nanotechnol. 13, 477–482 (2013). https://doi.org/10.1166/jnn.2013.6737

    Article  Google Scholar 

  62. Sundararaman, V., Davidson, B.D.: An unsymmetric double cantilever beam test for interfacial fracture toughness determination. Int. J. Solids Struct. 34, 799–817 (1997). https://doi.org/10.1016/S0020-7683(96)00055-8

    Article  Google Scholar 

  63. Ducept, F.: A mixed-mode failure criterion derived from tests on symmetric and asymmetric specimens. Compos. Sci. Technol. 59, 609–619 (1999). https://doi.org/10.1016/S0266-3538(98)00105-5

    Article  Google Scholar 

  64. Bennati, S., Colleluori, M., Corigliano, D., Valvo, P.S.: An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos. Sci. Technol. 69, 1735–1745 (2009). https://doi.org/10.1016/j.compscitech.2009.01.019

    Article  Google Scholar 

  65. Dimitri, R., Tornabene, F., Zavarise, G.: Analytical and numerical modeling of the mixed-mode delamination process for composite moment-loaded double cantilever beams. Compos. Struct. 187, 535–553 (2018). https://doi.org/10.1016/j.compstruct.2017.11.039

    Article  Google Scholar 

  66. Dimitri, R., Tornabene, F.: Numerical study of the mixed-mode delamination of composite specimens. J. Compos. Sci. (2018). https://doi.org/10.3390/jcs2020030

    Article  Google Scholar 

  67. Dimitri, R., Tornabene, F., Reddy, J.N.: Numerical study of the mixed-mode behavior of generally-shaped composite interfaces. Compos. Struct. 237, 111935 (2020). https://doi.org/10.1016/j.compstruct.2020.111935

    Article  Google Scholar 

  68. Dimitri, R., Tornabene, F.: Numerical study of the mixed-mode delamination of composite specimens. J. Compos. Sci. 2, 30 (2018). https://doi.org/10.3390/jcs2020030

    Article  Google Scholar 

  69. Dimitri, R., Cornetti, P., Mantič, V., Trullo, M., De Lorenzis, L.: Mode-I debonding of a double cantilever beam: a comparison between cohesive crack modeling and finite fracture mechanics. Int. J. Solids Struct. 124, 57–72 (2017). https://doi.org/10.1016/j.ijsolstr.2017.06.007

    Article  Google Scholar 

  70. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories. Compos. Part B Eng. 67, 490–509 (2014). https://doi.org/10.1016/j.compositesb.2014.08.012

    Article  Google Scholar 

  71. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill Book Company, New York (1970)

    Google Scholar 

  72. Jones, R.M.: Mechanics of Composite Materials, 2nd edn. CRC Press, Boca Raton (1999)

    Google Scholar 

  73. Martin, J., Maizeray, A., da Silva Tousch, C., Marcos, G., Czerwiec, T.G.: A new strategy to prepare alumina-zirconia composite or multilayered coatings by combining cold-spray deposition and plasma electrolytic oxidation. Mater. Today Commun. 26, 106676 (2023). https://doi.org/10.1016/j.mtcomm.2023.106676

    Article  Google Scholar 

  74. Zhang, X.C., Xu, B.S., Wang, H.D., Jiang, Y., Wu, Y.X.: Application of functionally graded interlayer on reducing the residual stress discontinuities at interfaces within a plasma-sprayed thermal barrier coating. Surf. Coat. Technol. 201(9–11), 57169 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.062

    Article  Google Scholar 

  75. Cai, H., Bao, G.: Crack bridging in functionally graded coatings. Int. J. Solid Struct. 35(7–8), 701–17 (1998). https://doi.org/10.1016/S0020-7683(97)00082-6

    Article  Google Scholar 

  76. Hofinger, I., Bahr, H.A., Balke, H., Kirchhoff, G., Häusler, C., Weiß, H.J.: Fracturemechanical modelling and damage characterization of functionally graded thermal barrier coatings by means of laser irradiation. Mater. Sci. Forum 308(311), 450–6 (1999). https://doi.org/10.4028/www.scientific.net/msf.308-311.450

    Article  Google Scholar 

  77. Chu, S., Wang, H., Wu, R.: Investigation on the properties of carbon fibre with C-Si functionally graded coating. Surf. Coat. Technol. 88(1–3), 38–43 (1997). https://doi.org/10.1016/S0257-8972(96)02866-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Dimitri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We here provide the extended expressions of constants \(d_{j} (j=7,....18)\), \(f_{j} (j=7,9,13)\), \(g_{j} (j=7,...,13)\), \(h_{7} \), as introduced in the closed form solution of the problem.

$$\begin{aligned} d_{7}= & {} g_{7} {T}\nonumber \\ d_{8}= & {} {N}-\frac{t_{1} }{t_{2} }d_{9} \nonumber \\ d_{9}= & {} \frac{1}{f_{9} }\left( {{M}_{1} +{N}\frac{1}{A_{11}^{\left( 1 \right) } }\left( {-B_{11}^{\left( 1 \right) } +\frac{F^{\left( 1 \right) }}{F^{\left( 2 \right) }}\frac{A_{11}^{\left( 2 \right) } }{A_{11}^{\left( 1 \right) } }\frac{1}{f_{13} }} \right) } \right) \nonumber \\ d_{10}= & {} g_{10} {T} \nonumber \\ d_{11}= & {} g_{11} {T} \nonumber \\ d_{12}= & {} d_{9} \frac{F^{\left( 1 \right) }}{A_{11}^{\left( 1 \right) } }\left( {\frac{A_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}g_{13} -\left( {\frac{t_{1} }{t_{2} }B_{11}^{\left( 1 \right) } +\frac{B_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}} \right) } \right) -\frac{{N}}{A_{11}^{\left( 1 \right) } }\left( {-B_{11}^{\left( 1 \right) } +\frac{F^{\left( 1 \right) }}{F^{\left( 2 \right) }}\frac{A_{11}^{\left( 2 \right) } }{A_{11}^{\left( 1 \right) } }\frac{1}{f_{13} }} \right) \nonumber \\ d_{13}= & {} d_{9} g_{13} +\frac{B_{11}^{\left( 1 \right) } }{f_{13} F^{\left( 1 \right) }}\left( {\frac{B_{11}^{\left( 1 \right) } }{A_{11}^{\left( 1 \right) } }-\frac{H_{1} }{2}} \right) \widehat{N}\nonumber \\ d_{14}= & {} d_{15} +\frac{\bar{{b}}}{F^{\left( 1 \right) }}\left( {B_{11}^{\left( 1 \right) } d_{12} +\frac{1}{2}\bar{{b}}B_{11}^{\left( 1 \right) } d_{10} -D_{11}^{\left( 1 \right) } d_{8} } \right) +\sum \limits _{i=1}^2 {\frac{t_{i} \bar{{b}}^{2}d_{7} }{2F^{\left( i \right) }}\left( {D_{11}^{\left( i \right) } +(-1)^{i}B_{11}^{\left( i \right) } \frac{H_{i} }{2}} \right) } \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} +\frac{\bar{{b}}}{F^{\left( 2 \right) }}\left( {-B_{11}^{\left( 2 \right) } d_{13} -\frac{1}{2}\bar{{b}}B_{11}^{\left( 2 \right) } d_{11} +D_{11}^{\left( 2 \right) } d_{9} } \right) \nonumber \\ d_{15}= & {} -\frac{\bar{{b}}D_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}\left( {d_{9} +\frac{t_{2} \bar{{b}}d_{7} }{2}} \right) +\frac{\bar{{b}}B_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}\left( {d_{13} +\frac{\bar{{b}}}{2}\left( {d_{11} -\frac{H_{2} }{2}t_{2} d_{7} } \right) } \right) \nonumber \\ d_{16}= & {} d_{17} +\frac{d_{10} }{A_{44}^{\left( 1 \right) } }-\frac{d_{11} }{A_{44}^{\left( 2 \right) } } \nonumber \\ d_{17}= & {} \frac{2}{H}\left( {d_{15} -d_{14} -\frac{d_{7} }{k_{x} }-\frac{H_{1} }{2}\left( {\frac{d_{10} }{A_{44}^{\left( 1 \right) } }-\frac{d_{11} }{A_{44}^{\left( 2 \right) } }} \right) } \right) \nonumber \\ d_{18}= & {} \bar{{b}}\left( {d_{16} -\frac{d_{10} }{A_{44}^{\left( 1 \right) } }} \right) +\frac{\bar{{b}}^{3}}{6F^{\left( 1 \right) }}\left( {A_{11}^{\left( 1 \right) } \left( {d_{10} -\frac{H_{1} }{2}t_{1} d_{7} } \right) +B_{11}^{\left( 1 \right) } t_{1} d_{7} } \right) +\frac{B_{11}^{\left( 1 \right) } \bar{{b}}^{2}}{2F^{\left( 1 \right) }}\left( {d_{12} -d_{8} } \right) \end{aligned}$$
(A2)
$$\begin{aligned} f_{7}= & {} \sum \limits _{i=1}^2 {\frac{t_{i} }{F^{\left( i \right) }}\left( {B_{11}^{\left( i \right) } +(-1)^{i}\frac{H_{i} }{2}A_{11}^{\left( i \right) } } \right) \,\,\,\,} \nonumber \\ f_{9}= & {} \frac{F^{\left( 1 \right) }}{F^{\left( 2 \right) }}\frac{A_{11}^{\left( 2 \right) } }{A_{11}^{\left( 1 \right) } }g_{13} -\frac{F^{\left( 1 \right) }}{A_{11}^{\left( 1 \right) } }\left( {\frac{t_{1} }{t_{2} }\frac{B_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}+\frac{B_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}} \right) \nonumber \\ f_{13}= & {} \frac{1}{F^{\left( 2 \right) }}\left( {\left( {B_{11}^{\left( 2 \right) } -B_{11}^{\left( 1 \right) } \frac{A_{11}^{\left( 2 \right) } }{A_{11}^{\left( 1 \right) } }} \right) +\frac{A_{11}^{\left( 2 \right) } }{2}\left( {\frac{H_{1} }{F^{\left( 1 \right) }}+H_{2} } \right) } \right) \nonumber \\ g_{7}= & {} \frac{\frac{1}{2F^{\left( 1 \right) }F^{\left( 2 \right) }}\left( {\frac{A_{11}^{\left( 1 \right) } A_{11}^{\left( 2 \right) } }{2}H+B_{11}^{\left( 2 \right) } A_{11}^{\left( 1 \right) } -B_{11}^{\left( 1 \right) } A_{11}^{\left( 2 \right) } } \right) }{h_{7} \left( {\frac{A_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}+\frac{t_{1} }{t_{2} }\frac{A_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}} \right) +f_{7} \frac{1}{2}\left( {\frac{t_{1} }{t_{2} }\frac{1}{F^{\left( 1 \right) }}\left( {\frac{H_{1} }{2}A_{11}^{\left( 1 \right) } -B_{11}^{\left( 1 \right) } } \right) -\frac{1}{F^{\left( 2 \right) }}\left( {\frac{H_{2} }{2}A_{11}^{\left( 2 \right) } +B_{11}^{\left( 2 \right) } } \right) } \right) } \nonumber \\ g_{8}= & {} -\frac{t_{1}^{2} }{t_{2} f_{9} } \nonumber \\ g_{9}= & {} \frac{t_{1} }{f_{9} } \nonumber \\ g_{10}= & {} 1-\frac{t_{1} }{t_{2} }g_{11} \nonumber \\ g_{11}= & {} \frac{\left( {f_{7} g_{7} +\frac{A_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}} \right) }{\left( {\frac{A_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}+\frac{t_{1} }{t_{2} }\frac{A_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}} \right) } \nonumber \\ g_{12}= & {} \frac{t_{1} }{f_{9} }\frac{F^{\left( 1 \right) }}{A_{11}^{\left( 1 \right) } }\left( {\frac{A_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}g_{13} -\left( {\frac{t_{1} }{t_{2} }\frac{B_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}+\frac{B_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}} \right) } \right) \nonumber \\ g_{13}= & {} \frac{1}{f_{13} }\left( {\frac{-t_{1} }{t_{2} }\frac{1}{F^{\left( 1 \right) }}\left( {\frac{H_{1} }{2}B_{11}^{\left( 1 \right) } -D_{11}^{\left( 1 \right) } } \right) +\frac{1}{F^{\left( 2 \right) }}\left( {\frac{H_{2} }{2}B_{11}^{\left( 2 \right) } +D_{11}^{\left( 1 \right) } } \right) -\frac{1}{A_{11}^{\left( 1 \right) } }\left( {B_{11}^{\left( 1 \right) } -\frac{H_{1} }{2}A_{11}^{\left( 1 \right) } } \right) \left( {\frac{B_{11}^{\left( 2 \right) } }{F^{\left( 2 \right) }}+\frac{t_{1} }{t_{2} }\frac{B_{11}^{\left( 1 \right) } }{F^{\left( 1 \right) }}} \right) } \right) \nonumber \\ h_{7}= & {} \sum \limits _{i=1}^2 {\frac{t_{i} }{2F^{\left( i \right) }}\left( {\frac{H_{i}^{2} A_{11}^{\left( i \right) } }{4}+(-1)^{i}H_{i} B_{11}^{\left( i \right) } +D_{11}^{\left( i \right) } } \right) \,\,\,\,} \end{aligned}$$
(A3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitri, R., Trullo, M., Rinaldi, M. et al. Analytical modeling of the mixed-mode behavior in functionally graded coating/substrate systems. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01301-8

Keywords

Navigation