Skip to main content
Log in

The influence of a non-local Moore–Gibson–Thompson heat transfer model on an underlying thermoelastic material under the model of memory-dependent derivatives

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this article, a modified Moore–Gibson–Thompson heat transfer equation with a memory-dependent derivative is utilized to investigate the thermoelastic interaction induced by non-Gaussian lasers in an infinitely elastic nonlocal medium. A memory-based derivative is also examined, and it was discovered to be superior at predicting the pattern of real-life challenges. This finding is part of the conviction that is currently analyzed. The idea of a memory-dependent derivative is attractive since it has some peculiarities. These characteristics include remarkable components as the kernel function and time lag, both of which can be freely selected according to the specifications of the problem. In addition, the non-local concept of Eringen was utilized in the research project so that the small-scale influence could be understood. Using the Laplace transform as a method, analytical–numerical solutions to problems involving thermo-physical fields, such as dimensionless temperature and deformation, as well as nonlocal physical stress, can be analyzed and compared. Numerical solutions have been used to explore the influence of memory-dependent derivative components such as the kernel function and the time delay coefficient on the studied domain variables of the medium. The computational outcomes of the studied fields are also used to find out the role of the non-local index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abazari, A., Safavi, S., Rezazadeh, G., Villanueva, L.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15(11), 28543–28562 (2015)

    ADS  Google Scholar 

  2. Durkan, C., Welland, M.E.: Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 61, 14215–14218 (2000)

    ADS  Google Scholar 

  3. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011)

    ADS  Google Scholar 

  4. Azizi, B., Shariati, M., Souq, S.M.N., Hosseini, M.: Bending and stretching behavior of graphene structures using continuum models calibrated with modal analysis. Appl. Math. Model. 114, 466–487 (2023)

    MathSciNet  Google Scholar 

  5. Eringen, A.C., Edelen, D.B.G.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C.: Nonlocal Continuum Filed Theories. Springer, New York (2002)

    MATH  Google Scholar 

  7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    ADS  Google Scholar 

  8. Li, C., Guo, H., Tian, X., He, T.: Size-dependent thermo-electromechanical responses analysis of multi-layered piezoelectric nanoplates for vibration control. Compos. Struct. 225, 111112 (2019)

    Google Scholar 

  9. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 414–438 (1965)

    Google Scholar 

  10. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    MATH  Google Scholar 

  11. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(7), 2731–2743 (2002)

    MATH  Google Scholar 

  12. Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014)

    Google Scholar 

  13. Lim, C.W., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its application in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  14. Li, L., Hu, Y.J.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Ebrahimi, F., Dabbagh, A.: Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory. Waves Random Complex Media 30(1), 157–176 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Sur, A.: Non-local memory-dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Media 32(1), 251–271 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    MATH  ADS  Google Scholar 

  18. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elasticity 2, 1–7 (1972)

    MATH  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elasticity 31, 189–208 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Tzou, D.Y.: Thermal shock phenomena under high rate response in solids. Annu. Rev. Heat Transf. 4(1), 111–185 (1992)

    Google Scholar 

  22. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Google Scholar 

  23. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  25. Abouelregal, A.E., Dassios, I., Moaaz, O.: Moore–Gibson–Thompson thermoelastic model effect of laser-induced microstructures of a microbeam sitting on Visco-Pasternak Foundations. Appl. Sci. 12, 9206 (2022)

    Google Scholar 

  26. Aboueregal, E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore Gibson Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235, 1004–1020 (2021)

  27. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore-Gibson-Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9, 1536 (2021)

    Google Scholar 

  28. Bazarra, N., Fernández, J.R., Quintanilla, R.: Analysis of a Moore–Gibson–Thompson thermoelastic problem. J. Comp. Appl. Math. 382, 113058 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Abouelregal, A.E., Saidi, A., Mohammad-Sedighi, H., Shirazi, A.H., Sofiyev, A.H.: Thermoelastic behavior of an isotropic solid sphere under a non-uniform heat flow according to the MGT thermoelastic model. J. Therm. Stress. 45(1), 12–29 (2022)

    Google Scholar 

  30. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. with Appl. 62, 1562–1567 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Li, H.F., Wang, J.L.: Molding the dynamic system with memory-dependent derivative. 24th Chinese Control and Decision Conference (CCDC) Taiyuan, 23–25 May (2012)

  32. Ezzat, M.A., Bary, A.A.: State space approach of two-temperature magnetothermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47, 618–630 (2009)

    MATH  Google Scholar 

  33. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Google Scholar 

  34. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131(7), 1–12 (2016)

    Google Scholar 

  35. Sun, Y., Fang, D., Saka, M., Soh, A.K.: Laser-induced vibrations of micro-beams under different boundary conditions. J. Mech. Phys. Solids 45(7–8), 1993–2013 (2008)

    MATH  Google Scholar 

  36. Tzou, D.Y.: Macro-to microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, New York (1997)

    Google Scholar 

  37. Chakraborty, S., Lahiri, A., Das, B.: Eigen value approach with memory dependent derivative on homogeneous isotropic infinitely extended rotating plate of a finite thickness in absence of heat source. J. Eng. Therm. Sci. 2(2), 69–83 (2022)

    Google Scholar 

  38. Das, N.C., Lahiri, A., Sarkar, S.: Eigenvalue value approach three dimensional coupled thermoelasticity in a rotating transversely isotropic medium. Tamsui Oxford J. Math. Sci. 25, 237–257 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Bachher, M., Sarkar, N., Lahiri, A.: Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. Int. J. Mech. Sci. 89, 84–91 (2012)

    Google Scholar 

  40. Sarkar, N.: Thermoelastic responses of a finite rod due to nonlocal heat conduction. Acta Mech. 231, 947–955 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Roychoudhuri, S.K., Dutta, P.S.: Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. Int. J. Solids Struct. 42, 4192–4203 (2005)

    MATH  Google Scholar 

  42. Wang, Q., Zhan, H.: On different numerical inverse Laplace methods for solute transport problems. Adv. Water Resour. 75, 80–92 (2015)

    ADS  Google Scholar 

  43. Wójcik, M., Szukiewicz, M., Kowalik, P.: Application of Numerical Laplace Inversion Methods in Chemical Engineering with Maple®. J. Appl. Comp. Sci. Meth. 7(1), 5–15 (2015)

    Google Scholar 

  44. Cheng, A., Sidauruk, P.: Approximate inversion of the Laplace transform. Math. J. 4, 76–82 (1994)

    Google Scholar 

  45. Kumar, R., Miglani, A., Rani, R.: Transient analysis of nonolocal microstretch thermoelastic thick circular plate with phase lags. Med. J. Model Simul. 09, 025–042 (2018)

    Google Scholar 

  46. Percus, J.K.: The stress tensor for nonlocal field equations. J. Math. Phys. 37(3), 1259–1267 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  47. Kostyrko, S., Grekov, M., Altenbach, H.: Stress concentration analysis of nanosized thin-film coating with rough interface. Contin. Mech. Therm. 31, 1863–1871 (2019)

    MathSciNet  Google Scholar 

  48. Li, C., He, T., Tian, X.: Nonlocal theory of thermoelastic diffusive materials and its application in structural dynamic thermo-elasto-diffusive responses analysis. Waves Random Complex Media 32(1), 174–203 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  49. Elghamdi, N.A.: The vibration of nano-beam subjected to thermal shock and moving heat source with constant speed. J. Nano Res. 61, 136–150 (2020)

    Google Scholar 

  50. Sur, A.: Non-local memory-dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Media 32(1), 251–271 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Abouelregal, A.E., Moustapha, M.V., Nofal, T.A., Rashid, S., Ahmad, H.: Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Res. Phys. 20, 103705 (2021)

    Google Scholar 

  52. Abouelregal, A.E.: An advanced model of thermoelasticity with higher-order memory-dependent derivatives and dual time-delay factors. Waves Random Complex Media 32(6), 2918–2939 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  53. Awwad, E., Abouelregal, A.E., Hassan, A.A.: Thermoelastic Memory-dependent Responses to an Infinite Medium with a Cylindrical Hole and Temperature-dependent Properties. Appl. Comp. Mech. 7, 870–882 (2021)

    Google Scholar 

  54. Kaur, I., Singh, K.: Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives. SN Appl. Sci. 4, 329 (2022)

    Google Scholar 

  55. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(3), 1365–1374 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  56. Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(5), Art. No. 1276 (2020)

  57. Scutaru, M.L., Vlase, S., et al.: New analytical method based on dynamic response of planar mechanical elastic systems, Bound. Value Probl. 2020, No.1, Art. No. 104 (2020)

  58. Vlase, S., Năstac, C., Marin, M., Mihălcică, M.: A method for the study of the vibration of mechanical bars systems with symmetries. Acta Tech. Napocensis, Ser. Appl. Math. Mech. Eng. 60(1), 539–544 (2017)

    Google Scholar 

  59. Alzahrani, F., Hobiny, A., Abbas, I., Marin, M.: An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry 12(2), Art. No. 848 (2020)

  60. Marin, M., Ellahi, R., Vlase, S., Bhatti, M.M.: On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 14(1), 534–540 (2020)

    Google Scholar 

  61. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.F.: Photothermoelastic survey with memory-dependent response for a rotating solid cylinder under varying heat flux via dual phase lag model. Pramana - J. Phys. 96, 219 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant No. (DSR2022-RG-0137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed E. Abouelregal or Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E., Marin, M. & Öchsner, A. The influence of a non-local Moore–Gibson–Thompson heat transfer model on an underlying thermoelastic material under the model of memory-dependent derivatives. Continuum Mech. Thermodyn. 35, 545–562 (2023). https://doi.org/10.1007/s00161-023-01195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01195-y

Keywords

Navigation