Skip to main content
Log in

Experimental study and numerical simulation of the dynamic penetration into dry clay

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Tests of dry clay were carried out in a uniaxial stress state using the experimental setup which implements the split Hopkinson pressure bar method. Based on the results of these experiments, the compressive strength of clay was determined as an important element of S.S. Grigoryan’s model of the soil medium. In addition, the parameters of this model are determined from the results of experiments using the modified Kolsky method with a sample enclosed in a rigid cage. To verify the model of the soil medium, special experiments were carried out on the penetration of striker with conical tips into dry clay in a reversed settings. Using this identified model in the LS-Dyna software package, numerical simulation of penetration into clay was carried out under conditions similar to those carried out the reversed experiments. Comparison of the results of physical and numerical experiments showed their satisfactory agreement at a dry friction coefficient of 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Forrestal, M.J., Luk, V.K.: Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. Trans. ASME. J. Appl. Mech. 55(2), 275–279 (1988)

    Article  ADS  Google Scholar 

  2. Shi, C., Wang, M., Li, J., Li, M.: A model of depth calculation for projectile penetration into dry sand and comparison with experiments. Int. J. Impact Eng. 73, 112–122 (2014)

    Article  Google Scholar 

  3. Ben-Dor, G., Dubinsky, A., Elperin, T.: Engineering models of high speed penetration into geological shields. Central Euro. J. Eng. 1(4), 1–19 (2014)

    Google Scholar 

  4. Kotov, V.L., Bragov, A.M., Balandin, V.V., et al.: Cavity-expansion approximation for projectile impact and penetration into sand. Continuum Mech. Thermodyn. 34, 395–421 (2022). https://doi.org/10.1007/s00161-021-01062-8

    Article  ADS  MathSciNet  Google Scholar 

  5. Lagunov, V.A., Stepanov, V.A.: Measurements of the dynamic compressibility of sand under high pressures. Zh. Prikl. Mekh. Tekhn. Fiz. (J. Appl. Mech. Tech. Phys.) 1, 88–96 (1963)

    Google Scholar 

  6. Bragov, A.M., Balandin, V.V., Lomunov, A.K., Filippov, A.R.: Determining the impact compressibility of soft soils from reversed test results. Tech. Phys. Lett. 32(6), 487–8 (2006). https://doi.org/10.1134/S1063785006060101

    Article  ADS  Google Scholar 

  7. Bragov, A.M., Grushevskii, G.M.: Influence of the moisture content and granulometric composition on the shock compressibility of sand. Tech. Phys. Lett. 19, 385–6 (1993)

    ADS  Google Scholar 

  8. Arlery, M., Gardou, M., Fleureau, J.M., Mariotti, C.: Dynamic behaviour of dry and watersaturated sand under planar shock conditions. Int. J. Imp. Eng. 37, 1–10 (2010). https://doi.org/10.1016/j.ijimpeng.2009.07.009

    Article  Google Scholar 

  9. Bragov, A.M., Lomunov, A.K., Sergeichev, I.V., Tsembelis, K., Proud, W.G.: Determination of physicomechanical properties of soft soils from medium to high strain rates. Int. J. Impact Eng. 35(9), 967–76 (2008)

    Article  Google Scholar 

  10. Song, B., Chen, W., Luk, V.: Impact compressive response of dry sand. Mech. Mater. 41, 777–85 (2009). https://doi.org/10.1016/j.mechmat.2009.01.003

    Article  Google Scholar 

  11. Martin, B.E., Chen, W., Song, B., Akers, S.A.: Moisture effects on the high strain-rate behavior of sand. Mech. Mater. 41, 786–98 (2009). https://doi.org/10.1016/j.mechmat.2009.01.014

    Article  Google Scholar 

  12. Martin, B.E., Kabir, M.E., Chen, W.: Undrained high-pressure and high strain-rate response of dry sand under triaxial loading. Int. J. Imp. Eng. 54, 51–63 (2013). https://doi.org/10.1016/j.ijimpeng.2012.10.008

    Article  Google Scholar 

  13. Chapman, D.J., Tsembelis, K., Proud, W.G.: The behavior of water saturated sand under shock-loading. In: Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. 2834–40 (2006)

  14. Luo, H., Cooper, W.L., Lu, H.: Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int. J. Imp. Eng. 65, 40–55 (2014). https://doi.org/10.1016/j.ijimpeng.2013.11.001

    Article  Google Scholar 

  15. Dianov, M.D., Zlatin, N.A., Mochalov, S.M., et al.: Shock compressibility of dry and watersaturated sand. Sov. Tech. Phys. Lett. 2, 207–8 (1977)

    Google Scholar 

  16. Bragov, A.M., Grushevsky, G.M., Lomunov, A.K.: Use of the Kolsky method for studying shear resistance of soils. DYMAT J. 1(3), 253–259 (1994)

    Google Scholar 

  17. Bragov, A.M., Grushevsky, G.M., Lomunov, A.K.: Use of the Kolsky method for confined tests of soft soils. Exper. Mech. 36, 237–242 (1996)

    Article  Google Scholar 

  18. Bragov, A.M., Kotov, V.L., Lomunov, A.K., Sergeichev, I.V.: Measurement of the dynamic characteristics of soft soils using the Kolsky method. J. Appl. Mech. Tech. Phys. 45(4), 580–5 (2004). https://doi.org/10.1023/B:JAMT.0000030338.66701.e9

    Article  ADS  Google Scholar 

  19. Omidvar, Mehdi, Iskander, Magued, Bless, Stephan: Stress-strain behavior of sand at high strain rates. Int. J. Impact Eng. 49, 192–213 (2012). https://doi.org/10.1016/j.ijimpeng.2012.03.004

    Article  Google Scholar 

  20. Yang, R., Chen, J., Yang, L., Fang, Sh., Liu, J.: An experimental study of high strain-rate properties of clay under high consolidation stress. Soil Dyn. Earthquake Eng. 92, 46–51 (2017)

    Article  Google Scholar 

  21. He, Y.X., Luan, G.B., Zhu, W.: Dynamic Constitutive modeling of partially saturated clay under impact loading. Int. J. Nonlinear Sci. Numer. Simul. 11, 195–199 (2010)

    Article  Google Scholar 

  22. Gang, Z., Yunliang, L., Jin, L., Zutang, W., Ke, W., Jiyong, J., Shunshun, T., Bingwen, Q., Yurong, Z., Xiangrong, Z.: Dynamic behavior of clay with different water content under planar shock conditions. Int. J. Imp. Eng. 129, 57–65 (2019). https://doi.org/10.1016/j.ijimpeng.2019.03.001

    Article  Google Scholar 

  23. Li, Yunliang, Zhu, Yurong, Zhang, Xiangrong, Li, Jin, Ke, Wu., Jing, Jiyong, Tan, Shushun, Zhou, Gang: Dynamic behavior of remolded loess under planar shock conditions. Int. J. Impact Eng. 111, 236–243 (2018). https://doi.org/10.1016/j.ijimpeng.2017.09.016

    Article  Google Scholar 

  24. Bragov, A.M., Gandurin, V.P., Grushevskii, G.M., Lomunov, A.K.: New potentials of Kol’skii’s method for studying the dynamic properties of soft soils. J. Appl. Mech. Tech. Phys 36(3), 476–481 (1996). https://doi.org/10.1007/BF02369791

    Article  ADS  Google Scholar 

  25. Bragov, A.M., Demenko, P.V., Kruszka, L., Lomunov, A.K., Sergeichev I.V.: Évaluation de la compressibilité dynamique et de la résistance aucisaillement pour une large gamme de pressions et de vitesses de déformation Investigation of dynamic compressibility and shear resistance of soft soils in a wide range of strain rate and pressure. In: Fifth European Conference “Numerical Methods in Geotechnical Engineering” NUMGE, Mestat (ed.), Presses de l’ENPC/LCPC, Paris, pp. 909-917 (2002)

  26. Konstantinov, A., Bragov, A., Igumnov, L., Eremeyev, V., Balandin, V.V., Balandin, V.L.: Experimental study and identification of a dynamic deformation model of dry clay at strain rates up to 2500 s-1. J. Appl. Comput. Mech. 8(3), 981–995 (2022). https://doi.org/10.22055/JACM.2022.39321.3387

    Article  Google Scholar 

  27. Balandin, V.V., Balandin, V.L., Bragov, A.M., Kotov, V.L.: Experimental study of the dynamics of penetration of a solid body into a soil medium. Tech. Phys. 61(6), 860–868 (2016)

    Article  Google Scholar 

  28. Bragov, A.M., Balandin, V.V., Igumnov, L.Á., Èîtov, V.L., Kruszka, L., Lomunov, Á.K.: Impact and penetration of cylindrical bodies into dry and water-saturated sand // Int. J. Imp. Eng. 122, 197–208 (2018)

    Article  Google Scholar 

  29. Omidvar, M., Iskander, M., Bless, S.: Response of granular media to rapid penetration //Int. J. Imp. Eng. 66, 60–82 (2014)

    Article  Google Scholar 

  30. Veldanov, V.A., Markov, V.A., Pusev, V.I., Ruchko, A.M., Sotskii, MYu., Fedorov, S.V.: Computation of non-deformable striker penetration into low strength obstacles using piezoelectric accelerometry data. Tech. Phys. 56(7), 992–1002 (2011). https://doi.org/10.1134/S1063784211070231

    Article  Google Scholar 

  31. Bivin, Yu.K., Viktorov, V.V., Stepanov, L.P.: Study of body motion in a clay environment. MTT 2, 159–165 (1978)

    Google Scholar 

  32. Bivin, Y.K., Viktorov, V.V., Kovalenko, B.Y.: Determination of dynamic characteristics of soils by the penetration method. Mech. Solids 15(3), 105–110 (1980)

    Google Scholar 

  33. Bivin, Yu.K., Kolesnikov, V.A., Flitman, L.M.: Determining mechanical properties of a medium by the dynamic penetration method. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela 5, 182–185 (1982). ([Mech. Solids (Engl. Transl.))

    Google Scholar 

  34. Buharev, Yu.N., Gandurin, V.P.: Forces acting on a sharp cone in the non-stationary stage of penetration into water and soil. Appl. Prob. Strength Plasticity (in Rus.) 53, 46–55 (1995)

    Google Scholar 

  35. Buharev Yu.N., Gandurin V.P., Korablev A.E., Morozov V.A., Himovich M.I.: An experimental study of the penetration of an undeformable striker into clay and snow. Appl. Prob. Strength Plasticity (in Rus.). 99–106 (1991)

  36. Buharev, Yu.N., Korablev, A.E., Himovich, M.I.: Experimental determination of shear stresses on the surface of the impactor during dynamic penetration into the soil. Mech. Solids (In Rus.) 2, 186–188 (1995)

    Google Scholar 

  37. Balandin, V.V., Balandin, Vl.Vl., Bragov, A.M.: Experimental study of the processes of penetration of axisymmetric bodies into soft soil media/Nizhny Novgorod, ISBN 978-5-600-02899-9, P.163 (in Rus) (2020)

  38. Dayal, U., Allen, J.H., Reddy, D.V.: Low velocity projectile penetration of clay. J. Geotherm Eng. Div. 8, 919–937 (1980)

    Article  Google Scholar 

  39. Kolsky, H.: An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Lond. B 62, 676–700 (1949)

    Article  ADS  Google Scholar 

  40. Grigoryan, S.S.: Basic concepts of soil dynamics. J. Appl. Math. Mech. 24(6), 1057–1072 (1960). ((In Rus))

    Google Scholar 

  41. Bazhenov, V.G., Balandin, V.V., Grigoryan, S.S., Kotov, V.L.: Analysis of models for calculating the motion of solids of revolution of minimum resistance in soil media. J. Appl. Math. Mech. 78(1), 65–76 (2014). https://doi.org/10.1016/j.jappmathmech.2014.05.008

    Article  MathSciNet  MATH  Google Scholar 

  42. LS-DYNA Keyword User’s Manual, Vol. II, Material Models, LS-DYNA R11 10/12/18 (r:10572), Livermore Software Technology Corporation (LSTC, p.178-182)

  43. Dyanov, D.Y., Kotov, V.L.: Determination of nonlinear strength characteristics of sandy soil based on the Grigoryan soil model. Prob. Strength Plast. 82, 471–482 (2020). https://doi.org/10.32326/1814-9146-2020-82-4-471-482

Download references

Acknowledgements

The work was financially supported by the Strategic Academic Leadership Program Priority 2030 (internal number H-496-99_2021-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Konstantinov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeyev, V.A., Balandin, V.V., Balandin, V.V. et al. Experimental study and numerical simulation of the dynamic penetration into dry clay. Continuum Mech. Thermodyn. 35, 457–469 (2023). https://doi.org/10.1007/s00161-023-01189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01189-w

Keywords

Navigation