Skip to main content
Log in

Finite strain continuum theory for phase transformations in ferromagnetic elastic–plastic solids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A continuum mechanical theory is formulated to address deformation of ferrous alloys under combined high-pressure, high-rate loading in the presence of potentially large magnetic fields. The material may undergo forward and reverse solid–solid phase transformations, e.g., martensitic transformations. The general theory encompasses numerous other physical phenomena that may arise depending on material composition and thermo-magneto-mechanical loading regime: finite thermoelasticity, plastic deformation, damage, and magnetoelastic coupling. A homogenization procedure motivates constitutive relations for the mixed-phase region. Phase transformations are driven by total Gibbs free energy differences between co-existing phases, including contributions from magnetic fields. The theory is fully consistent with local governing equations of nonlinear electromagnetic continua, including conservation laws of momentum and energy, Maxwell’s equations in the Galilean approximation, and the entropy production inequality. Kinetic relations for rates of plastic deformation, damage, and phase fractions all incur non-negative dissipation. Calculations demonstrate capabilities of the theory for ferrous polycrystals in loading regimes pertinent to static and shock compression, with and without superposed magnetic fields. The increase in pressure required for the \(\alpha \rightarrow \epsilon \) transformation in pure iron is quantified for very large external magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Joo, H.D., Kim, S.U., Koo, Y.M., Shin, N.S., Choi, J.K.: An effect of a strong magnetic field on the phase transformation in plain carbon steels. Metall. Mater. Trans. A 35, 1663–1668 (2004)

    Article  Google Scholar 

  2. Hao, X., Ohtsuka, H.: Effects of a high magnetic field on transformation temperatures in Fe-based alloys. ISIJ Int. 46, 1271–1273 (2006)

    Article  Google Scholar 

  3. Murdoch, H.A., Hernández-Rivera, E., Giri, A.: Modeling magnetically influenced phase transformations in alloys. Metall. Mater. Trans. A 52, 2896–2908 (2021)

    Article  Google Scholar 

  4. Duvall, G.E., Graham, R.A.: Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977)

    Article  ADS  Google Scholar 

  5. Curran, D.R.: Dynamic mechanical behavior of iron. In: Burke, J.J., Weiss, V. (eds.) Shock Waves and the Mechanical Properties of Solids, pp. 121–138. Syracuse University Press, New York (1971)

    Google Scholar 

  6. Barker, L.M., Hollenbach, R.E.: Shock wave study of the \(\alpha \leftrightarrow \varepsilon \) phase transition in iron. J. Appl. Phys. 45, 4872–4887 (1974)

    Article  ADS  Google Scholar 

  7. Xie, Z., He, M., Xu, P., Li, Q., Pei, C., Xie, S., Chen, Z.: A mechanism study on influence of strong external magnetic field on fracture properties of a ferromagnetic steel. AIP Adv. 9, 075219 (2019)

    Article  ADS  Google Scholar 

  8. Maugin, G.A., Eringen, A.C.: On the equations of the electrodynamics of deformable bodies of finite extent. J.de Mécanique 16, 101–147 (1977)

    MathSciNet  MATH  ADS  Google Scholar 

  9. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  10. Maugin, G.A., Fomethe, A.: On the elastoviscoplasticity of ferromagnetic crystals. Int. J. Eng. Sci. 20, 885–908 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mićunović, M.: Thermodynamical and self-consistent approach to inelastic ferromagnetic polycrystals. Arch. Mech. 58, 393–430 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Daniel, L., Hubert, O., Buiron, N., Billardon, R.: Reversible magneto-elastic behavior: a multiscale approach. J. Mech. Phys. Solids 56, 1018–1042 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Barton, N.R., Benson, D.J., Becker, R.: Crystal level continuum modelling of phase transformations: the \(\alpha \leftrightarrow \epsilon \) transformation in iron. Modell. Simul. Mater. Sci. Eng. 13, 707–731 (2005)

    Article  ADS  Google Scholar 

  14. Turteltaub, S., Suiker, A.S.J.: Transformation-induced plasticity in ferrous alloys. J. Mech. Phys. Solids 53, 1747–1788 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Turteltaub, S., Suiker, A.S.J.: A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations. Int. J. Solids Struct. 43, 4509–4545 (2006)

    Article  MATH  Google Scholar 

  16. Wong, S.L., Madilava, M., Prahl, U., Roters, F., Raabe, D.: A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 118, 140–151 (2016)

    Article  ADS  Google Scholar 

  17. Stringfellow, R.G., Parks, D.M., Olson, G.B.: A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 40, 1703–1716 (1992)

    Article  Google Scholar 

  18. Tomita, Y., Iwamoto, T.: Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. Int. J. Mech. Sci. 37, 1295–1305 (1995)

    Article  Google Scholar 

  19. Boettger, J.C., Wallace, D.C.: Metastability and dynamics of the shock-induced phase transition in iron. Phys. Rev. B 55, 2840–2849 (1997)

    Article  ADS  Google Scholar 

  20. Clayton, J.D., Lloyd, J.T.: A dynamic finite-deformation constitutive model for steels undergoing slip, twinning, and phase changes. J. Dyn. Behav. Mater. 7, 217–247 (2021)

    Article  Google Scholar 

  21. Andrews, D.J.: Equation of state of the alpha and epsilon phases of iron. J. Phys. Chem. Solids 34, 825–840 (1973)

    Article  ADS  Google Scholar 

  22. Yong-Tao, C., Xiao-Jun, T., Qing-Zhong, L.: Shock-induced phase transition and spalling characteristic in pure iron and FeMnNi alloy. Chin. Phys. B 19, 056402 (2010)

    Article  ADS  Google Scholar 

  23. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  24. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Clayton, J.D.: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  26. Thurston, R.N.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik. volume VI, pp. 109–308. Springer, Berlin (1974)

    Google Scholar 

  27. Maugin, G.A., Sabir, M.: Mechanical and magnetic hardening of ferromagnetic bodies: influence of residual stresses and applications to nondestructive testing. Int. J. Plast 6, 573–589 (1990)

    Article  MATH  Google Scholar 

  28. James, R.D., Kinderlehrer, D.: Frustration in ferromagnetic materials. Continuum Mech. Thermodyn. 2, 215–239 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. DeSimone, A., James, R.D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids 50, 283–320 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon, Oxford (1982)

    Google Scholar 

  31. Amari, S.: A theory of deformations and stresses of ferromagnetic substances by Finsler geometry. In: Kondo, K. (ed.) RAAG Memoirs. volume 3, pp. 257–278. Gakujutsu Bunken Fukyu-Kai, Tokyo (1962)

  32. Maugin, G.A., Eringen, A.C.: Deformable magnetically saturated media. I. Field equations. J. Math. Phys. 13, 143–155 (1972)

    Article  ADS  Google Scholar 

  33. Fomethe, A., Maugin, G.A.: Material forces in thermoelastic ferromagnets. Continuum Mech. Thermodyn. 8, 275–292 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Clayton, J.D.: Finsler differential geometry in continuum mechanics: fundamental concepts, history, and renewed application to ferromagnetic solids. Math. Mech. Solids 27, 910–949 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Clayton, J.D.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014)

    Book  Google Scholar 

  36. Truesdell, C.A., Toupin, R.A.: The classical field theories. In: Flugge, S. (ed.) Handbuch der Physik. volume III, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  37. Lax, M., Nelson, D.F.: Maxwell equations in material form. Phys. Rev. B 13, 1777–1784 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  38. Weile, D.S., Hopkins, D.A., Gazonas, G.A., Powers, B.M.: On the proper formulation of Maxwellian electrodynamics for continuum mechanics. Continuum Mech. Thermodyn. 26, 387–401 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Clayton, J.D.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Clayton, J.D.: Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. Int. J. Eng. Sci. 79, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Clayton, J.D., Knap, J.: Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Continuum Mech. Thermodyn. 30, 421–455 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Poirier, J.-P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Article  ADS  Google Scholar 

  43. de Rességuier, T., Hallouin, M.: Effects of the \(\alpha \)- \(\varepsilon \) phase transition on wave propagation and spallation in laser shock-loaded iron. Phys. Rev. B 77, 174107 (2008)

    ADS  Google Scholar 

  44. Cocks, A.C.F., Ashby, M.F.: On creep fracture by void growth. Prog. Mater Sci. 27, 189–244 (1982)

    Article  Google Scholar 

  45. Tuler, F.R., Butcher, B.M.: A criterion for the time dependence of dynamic fracture. Int. J. Fract. Mech. 4, 431–437 (1968)

    Article  Google Scholar 

  46. Davison, L., Stevens, A.L.: Continuum measures of spall damage. J. Appl. Phys. 43, 988–994 (1972)

    Article  ADS  Google Scholar 

  47. Hanim, S., Ahzi, S.: A unified approach for pressure and temperature effects in dynamic failure criteria. Int. J. Plast 17, 1215–1244 (2001)

    Article  MATH  Google Scholar 

  48. Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  49. Clayton, J.D.: Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. J. Mech. Phys. Solids 124, 714–757 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Li, J., Wu, Q., Xue, T., Geng, H., Yu, J., Jin, K., Li, J., Tan, Y., Xi, F.: The \(\alpha \)-\(\gamma \)-\(\varepsilon \) triple point and phase boundaries of iron under shock compression. J. Appl. Phys. 122, 025901 (2017)

    Article  ADS  Google Scholar 

  51. Guinan, M.W., Steinberg, D.J.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Article  ADS  Google Scholar 

  52. Taylor, R.D., Cort, G., Willis, J.O.: Internal magnetic fields in hcp-iron. J. Appl. Phys. 53, 8199–8201 (1982)

    Article  ADS  Google Scholar 

  53. Gilder, S., Glen, J.: Magnetic properties of hexagonal closed-packed iron deduced from direct observations in a diamond anvil cell. Science 279, 72–74 (1998)

    Article  ADS  Google Scholar 

  54. Herper, H.C., Hoffmann, E., Entel, P.: Ab initio full-potential study of the structural and magnetic phase stability of iron. Phys. Rev. B 60, 3839–3848 (1999)

    Article  ADS  Google Scholar 

  55. Buiron, N., Hirsinger, L., Billardon, R.: A micro-macro model for magnetostriction and stress effect on magnetisation. J. Magn. Magn. Mater. 196, 868–870 (1999)

    Article  ADS  Google Scholar 

  56. Kim, S., Yun, K., Kim, K., Won, C., Ji, K.: A general nonlinear magneto-elastic coupled constitutive model for soft ferromagnetic materials. J. Magn. Magn. Mater. 500, 166406 (2020)

    Article  Google Scholar 

  57. Williams, R.K., Yarbrough, D.W., Masey, J.W., Holder, T.K., Graves, R.S.: Experimental determination of the phonon and electron components of the thermal conductivity of bcc iron. J. Appl. Phys. 52, 5167–5175 (1981)

    Article  ADS  Google Scholar 

  58. Brown, W.F.: Domain theory of ferromagnetics under stress. Part II. Magnetostriction of polycrystalline material. Phys. Rev. 53, 482–491 (1938)

    Article  ADS  Google Scholar 

  59. Rittel, D., Ravichandran, G., Venkert, A.: The mechanical response of pure iron at high strain rates under dominant shear. Mater. Sci. Eng. A 432, 191–201 (2006)

    Article  Google Scholar 

  60. Soares, G.C., Hokka, M.: The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compression. Int. J. Impact Eng. 156, 103940 (2021)

    Article  Google Scholar 

  61. Wallace, D.C., Sidles, P.H., Danielson, G.C.: Specific heat of high purity iron by a pulse heating method. J. Appl. Phys. 31, 168–176 (1960)

    Article  ADS  Google Scholar 

  62. Clayton, J.D.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Clayton, J.D.: Nonlinear thermodynamic phase field theory with application to fracture and dynamic inelastic phenomena in ceramic polycrystals. J. Mech. Phys. Solids 157, 104633 (2021)

    Article  MathSciNet  Google Scholar 

  64. Mao, H.-K., Bassett, W.A., Takahashi, T.: Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. J. Appl. Phys. 38, 272–276 (1967)

    Article  ADS  Google Scholar 

  65. Giles, P.M., Longenbach, M.H., Marder, A.R.: High-pressure \(\alpha \leftrightarrow \epsilon \) martensitic transformation in iron. J. Appl. Phys. 42, 4290–4295 (1971)

    Article  ADS  Google Scholar 

  66. Taylor, R.D., Pasternak, M.P., Jeanloz, R.: Hysteresis in the high pressure transformation of bcc-to hcp-iron. J. Appl. Phys. 69, 6126–6128 (1991)

    Article  ADS  Google Scholar 

  67. Bancroft, D., Peterson, E.L., Minshall, S.: Polymorphism of iron at high pressure. J. Appl. Phys. 27, 291–298 (1956)

    Article  ADS  Google Scholar 

  68. McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 294–417. Academic Press, New York (1970)

    Google Scholar 

  69. Jensen, B.J., Gray, G.T., III., Hixson, R.S.: Direct measurements of the \(\alpha -\epsilon \) transition stress and kinetics for shocked iron. J. Appl. Phys. 105, 103502 (2009)

    Article  ADS  Google Scholar 

  70. Grady, D.E.: Shock-induced anisotropy in ferromagnetic material. I. Domain-theory analysis of single-crystal behavior. J. Appl. Phys. 43, 1942–1948 (1972)

    Article  ADS  Google Scholar 

  71. Barge, N.V., Boehler, R.: Effect of non-hydrostaticity on the \(\alpha \)-\(\epsilon \) transition of iron. High Pressure Res. 6, 133–140 (1990)

    Article  ADS  Google Scholar 

  72. Ma, Y., Selvi, E., Levitas, V.I., Hashemi, J.: Effect of shear strain on the \(\alpha \)-\(\epsilon \) phase transition of iron: a new approach in the rotational diamond anvil cell. J. Phys.: Condens. Matter 18, S1075–S1082 (2006)

    ADS  Google Scholar 

  73. Caspersen, K.J., Lew, A., Ortiz, M., Carter, E.A.: Importance of shear in the bcc-to-hcp transformation in iron. Phys. Rev. Lett. 93, 115501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Lloyd, J.T. Finite strain continuum theory for phase transformations in ferromagnetic elastic–plastic solids. Continuum Mech. Thermodyn. 34, 1579–1620 (2022). https://doi.org/10.1007/s00161-022-01150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01150-3

Keywords

Navigation