Skip to main content
Log in

Screw dislocation pileups against a bimaterial interface incorporating surface elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Using the method of continuously distributed dislocations, we study the distribution of a pileup of screw dislocations against an interface between two elastic half-planes. We incorporate surface elasticity on the bimaterial interface using the continuum-based surface/interface model of Gurtin and Murdoch. The equilibrium condition is formulated in terms of a singular integral equation. The singular integral equation is solved numerically using the Gauss–Chebyshev integration formula to arrive at the dislocation distribution function and the number of dislocations in the pileup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chou, Y.T.: Linear dislocation arrays in heterogeneous materials. Acta Metall. 13, 779–783 (1965)

    Article  Google Scholar 

  2. Barnett, D.M.: The effect of shear modulus on the stress distribution produced by a planar array of screw dislocations near a bi-metallic interface. Acta Metall. 15, 589–594 (1967)

    Article  Google Scholar 

  3. Barnett, D.M., Tetelman, A.S.: The stress distribution produced by screw dislocation pile-ups at rigid circular cylindrical inclusions. J. Mech. Phys. Solids 14, 329–348 (1966)

    Article  ADS  Google Scholar 

  4. Barnett, D.M., Tetelman, A.S.: The stresses produced by a screw dislocation pileup at a circular inclusion of finite rigidity. Can. J. Phys. 45, 841–863 (1967)

    Article  ADS  Google Scholar 

  5. Kuang, J.G., Mura, T.: Dislocation pile-up in two-phase materials. J. Appl. Phys. 39, 109–120 (1968)

    Article  ADS  Google Scholar 

  6. Wagoner, R.H.: Calculating dislocation spacings in pile-ups at grain boundaries. Metall. Trans. A 12A, 2015–2023 (1981)

    Article  ADS  Google Scholar 

  7. Voskoboinikov, R..E., Chapman, S..J., Ockendon, J..R.: Continuum and discrete models of dislocation pile-ups. II. Pile-up of screw dislocations at the interface in a bimetallic solid. Phil. Mag. Lett. 87, 669–676 (2007)

    Article  ADS  Google Scholar 

  8. Voskoboinikov, R.E., Chapman, S.J., McLeod, J.B., Ockendon, J.R.: Asymptotics of edge dislocation pile-up against a bimetallic interface. Math. Mech. Solids 14, 284–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lubarda, V.A.: An analysis of edge dislocation pileups against a circular inhomogeneity or a bimetallic interface. Int. J. Solids Struct. 129, 146–155 (2017)

    Article  Google Scholar 

  10. Lubarda, V.A.: A pileup of edge dislocations against an inclined bimetallic interface. Mech. Mater. 117, 32–40 (2018)

    Article  Google Scholar 

  11. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME J. Appl. Mech. 71, 663–671 (2004)

  12. Gurtin, M.E., Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  14. Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interface in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  ADS  Google Scholar 

  15. Ru, C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China 53, 536–544 (2010)

    Google Scholar 

  16. Duan, H.L., Wang, J., Huang, Z.P., Karhaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Tian, L., Rajapakse, R.K.N.D.: Analytical solution of size-dependent elastic field of a nano-scale circular inhomogeneity. ASME J. Appl. Mech. 74, 568–574 (2007)

    Article  ADS  MATH  Google Scholar 

  18. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. ASME J. Appl. Mech. 77, 021011-1-021011-7 (2010)

  19. Kim, C.I., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (mode I and mode II) in the presence of surface elasticity. J. Elasticity 104, 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on mode-III interface crack. Arch. Mech. 63, 267–286 (2011)

  21. Kim, C.I., Ru, C.Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Antipov, Y.A., Schiavone, P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64, 87–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X.: A mode III arc shaped crack with surface elasticity. Z. Angew. Math. Phys. 66, 1987–2000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Fan, H.: A piezoelectric screw dislocation in a bimaterial with surface piezoelectricity. Acta Mech. 226, 3317–3331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, X., Schiavone, P.: Interaction between an edge dislocation and a crack with surface elasticity. ASME J. Appl. Mech. 82, 021006-1-021006-8 (2015)

  26. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Quarterly Appl. Math. 29, 525–534 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    Book  MATH  Google Scholar 

  28. Suo, Z.G.: Singularities interacting with interfaces and cracks. Int. J. Solids Struct. 25, 1133–1142 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No.: RGPIN-2017-03716115112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Wang or Peter Schiavone.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Schiavone, P. Screw dislocation pileups against a bimaterial interface incorporating surface elasticity. Continuum Mech. Thermodyn. 34, 1545–1552 (2022). https://doi.org/10.1007/s00161-022-01144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01144-1

Keywords

Navigation