Skip to main content
Log in

Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective \(d_{333}^{*}\) piezoelectric coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 43001 (2008)

    Article  Google Scholar 

  2. Eynbeygi, M., Aghdam, M.M.: A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech. 226, 3177–3194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vijaya, M.: Piezoelectric Materials and Devices. CRC Press, Boca Raton (2013)

    Google Scholar 

  4. Bowen, C.R., Topolov, V.Y., Kim, H.A.: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol. 238. Springer, Berlin (2016)

    Book  Google Scholar 

  5. Cholleti, E.R.: A review on 3D printing of piezoelectric materials. IOP Conf. Ser. Mater. Sci. Eng. 455, 12046 (2018)

    Article  Google Scholar 

  6. Newnham, R.E.: Composite electroceramics. Ferroelectrics 68, 1–32 (1986)

    Article  Google Scholar 

  7. Gururaja, T.R., Schulze, W.A., Cross, L.E., Newnham, R.E., Auld, B.A., Wang, Y.J.: Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrasonics 32, 481–498 (1985)

    Article  Google Scholar 

  8. Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  9. Gocha, A.: Smart materials make smart phones: how ceramics and glass contribute to the \$479B smartphone market. Am. Ceram. Soc. Bull. 97, 11–23 (2018)

    Google Scholar 

  10. El Messiery, M.A., Hastings, G.W., Rakowski, S.: Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979)

    Article  Google Scholar 

  11. Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M.: Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014)

    Article  Google Scholar 

  12. Tang, Y., Wu, C., Wu, Z., Hu, L., Zhang, W., Zhao, K.: Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7, 43360 (2017)

    Article  ADS  Google Scholar 

  13. Jacob, J., More, N., Kalia, K., Kapusetti, G.: Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 1–11 (2018)

    Article  Google Scholar 

  14. Silva, C.C., Thomazini, D., Pinheiro, A.G., Aranha, N., Figueiró, S.D., Góes, J.C., Sombra, A.S.B.: Collagen-hydroxyapatite films: piezoelectric properties. Mater. Sci. Eng. B 86, 210–218 (2001)

    Article  Google Scholar 

  15. Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids. 53, 2529–2556 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 27, 659–684 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)

    Article  Google Scholar 

  18. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)

    Article  MATH  Google Scholar 

  19. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  MATH  Google Scholar 

  20. Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11, 41–57 (2015)

    Article  Google Scholar 

  22. Qin, R.-S., Xiao, Y., Lan, H.: Numerical simulation of effective properties of 3D piezoelectric composites. J. Eng. 2014, 1–14 (2014)

    Article  Google Scholar 

  23. Wei, E.-B., Poon, Y.M., Shin, F.G., Gu, G.Q.: Effective properties of piezoelectric composites with periodic structure. Phys. Rev. B. 74, 14107 (2006)

    Article  ADS  Google Scholar 

  24. Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27, 507–529 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhou, Z., Ni, Y., Zhu, S., Tong, Z., Sun, J., Xu, X.: An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells. Compos. Struct. 207, 292–303 (2019)

    Article  Google Scholar 

  26. Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)

    Article  Google Scholar 

  27. Xu, Y., Xiao, J., Jia, J., Qiu, P., Zhao, Q.: An analytical method for piezoelectric composites containing doubly periodic piezoelectric fibers with ring-shaped cross-section under antiplane shear and its application. Comput. Mater. Sci. 88, 7–13 (2014)

    Article  Google Scholar 

  28. Ma, X., Wei, G.: Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites. Compos. Struct. 180, 420–428 (2017)

    Article  Google Scholar 

  29. Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. McCartney, L.N., Crocker, L.E., Wright, L.: Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis. J. Appl. Phys. 125, 184503 (2019)

    Article  ADS  Google Scholar 

  31. Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)

    Article  Google Scholar 

  32. Dubey, M.K., Panda, S.: Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure. Arch. Appl. Mech. 88, 2261–2281 (2018)

    Article  ADS  Google Scholar 

  33. Sreenivasa Prasath, S., Arockiarajan, A.: Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC). Sens. Actuators A Phys. 214, 31–44 (2014)

    Article  Google Scholar 

  34. Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)

    Article  Google Scholar 

  35. Otero, J.A., Rodríguez-Ramos, R., Monsivais, G.: Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes. Math. Methods Appl. Sci. 40, 3290–3310 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)

    Book  MATH  Google Scholar 

  37. Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press, Moscow (1984).. ((in Russian))

    MATH  Google Scholar 

  38. Breuer, K., Stommel, M.: RVE modelling of short fiber reinforced thermoplastics with discrete fiber orientation and fiber length distribution. SN Appl. Sci. 2, 91 (2020)

    Article  Google Scholar 

  39. Chen, L., Gu, B., Zhou, J., Tao, J.: Study of the effectiveness of the RVEs for random short fiber reinforced elastomer composites. Fibers Polym. 20, 1467–1479 (2019)

    Article  Google Scholar 

  40. Penta, R., Raum, K., Grimal, Q., Schrof, S., Gerisch, A.: Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir. Biomim. 11, 35004 (2016)

    Article  Google Scholar 

  41. Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Rodríguez-Ramos, R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—II. Piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)

    Article  MATH  Google Scholar 

  42. Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  43. Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)

    Article  ADS  MATH  Google Scholar 

  44. Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)

    Article  MATH  Google Scholar 

  45. Rodríguez-Ramos, R., de Medeiros, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)

    Article  Google Scholar 

  46. Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)

    Article  ADS  Google Scholar 

  47. Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)

    Article  ADS  Google Scholar 

  48. Cao, Y., Sha, A., Liu, Z., Li, J., Jiang, W.: Energy output of piezoelectric transducers and pavements under simulated traffic load. J. Clean. Prod. 279, 123508 (2021)

    Article  Google Scholar 

  49. Pan, C.-T., Wang, S.-Y., Yen, C.-K., Kumar, A., Kuo, S.-W., Zheng, J.-L., Wen, Z.-H., Singh, R., Singh, S.P., Khan, M.T., Chaudhary, R.K., Dai, X., Chandra Kaushik, A., Wei, D.-Q., Shiue, Y.-L., Chang, W.-H.: Polyvinylidene fluoride-added ceramic powder composite near-field electrospinned piezoelectric fiber-based low-frequency dynamic sensors. ACS Omega 5, 17090–17101 (2020)

    Article  Google Scholar 

  50. Ma, G., Li, Y., Wang, L., Zhang, J., Li, Z.: Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr. Build. Mater. 241, 117982 (2020)

    Article  Google Scholar 

  51. Omoniyi, O.A., Mansour, R., Reid, A., Liang, L., O’Leary, R., Windmill, J.F.C.: 3D-printing of a piezocomposite material with high filler content for transducer applications. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–3 (2020)

  52. Assagra, Y.A.O., Altafim, R.A.P., do Carmo, J.P., Altafim, R.A.C., Rychkov, D., Wirges, W., Gerhard, R.: A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 27, 1668–1674 (2020)

    Article  Google Scholar 

  53. Rosen, V.B., Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23, 921–928 (2002)

    Article  Google Scholar 

  54. Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J.: Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 88, 351–361 (2011)

    Article  Google Scholar 

  55. Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)

    Article  Google Scholar 

  56. Tofail, S.A.M., Haverty, D., Stanton, K.T., McMonagle, J.B.: Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics. 319, 117–123 (2005)

    Article  Google Scholar 

  57. Lees, S., Prostak, K.S., Ingle, V.K., Kjoller, K.: The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55, 180–189 (1994)

    Article  Google Scholar 

  58. Alexander, B., Daulton, T.L., Genin, G.M., Lipner, J., Pasteris, J.D., Wopenka, B., Thomopoulos, S.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface. 9, 1774–1786 (2012)

    Article  Google Scholar 

  59. Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4, 1253–1256 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L. E. Barraza de León would like to thank CONACYT for scholarship funding. YEA gratefully acknowledges the Program of Postdoctoral Scholarships of DGAPA from UNAM, México. HCM and YEA are grateful to the support of the CONACYT Basic Science Grant A1-S-9232. FJS acknowledges the funding of PAPIIT-DGAPA-UNAM IA100919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Camacho-Montes.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev, and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de León, L.E.B., Camacho-Montes, H., Espinosa-Almeyda, Y. et al. Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites. Continuum Mech. Thermodyn. 33, 1957–1978 (2021). https://doi.org/10.1007/s00161-021-01016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01016-0

Keywords

Navigation