Abstract
In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective \(d_{333}^{*}\) piezoelectric coefficient.
Similar content being viewed by others
References
Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 43001 (2008)
Eynbeygi, M., Aghdam, M.M.: A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech. 226, 3177–3194 (2015)
Vijaya, M.: Piezoelectric Materials and Devices. CRC Press, Boca Raton (2013)
Bowen, C.R., Topolov, V.Y., Kim, H.A.: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol. 238. Springer, Berlin (2016)
Cholleti, E.R.: A review on 3D printing of piezoelectric materials. IOP Conf. Ser. Mater. Sci. Eng. 455, 12046 (2018)
Newnham, R.E.: Composite electroceramics. Ferroelectrics 68, 1–32 (1986)
Gururaja, T.R., Schulze, W.A., Cross, L.E., Newnham, R.E., Auld, B.A., Wang, Y.J.: Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrasonics 32, 481–498 (1985)
Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)
Gocha, A.: Smart materials make smart phones: how ceramics and glass contribute to the \$479B smartphone market. Am. Ceram. Soc. Bull. 97, 11–23 (2018)
El Messiery, M.A., Hastings, G.W., Rakowski, S.: Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979)
Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M.: Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014)
Tang, Y., Wu, C., Wu, Z., Hu, L., Zhang, W., Zhao, K.: Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7, 43360 (2017)
Jacob, J., More, N., Kalia, K., Kapusetti, G.: Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 1–11 (2018)
Silva, C.C., Thomazini, D., Pinheiro, A.G., Aranha, N., Figueiró, S.D., Góes, J.C., Sombra, A.S.B.: Collagen-hydroxyapatite films: piezoelectric properties. Mater. Sci. Eng. B 86, 210–218 (2001)
Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids. 53, 2529–2556 (2005)
Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 27, 659–684 (2015)
Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)
Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)
Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)
Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)
Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11, 41–57 (2015)
Qin, R.-S., Xiao, Y., Lan, H.: Numerical simulation of effective properties of 3D piezoelectric composites. J. Eng. 2014, 1–14 (2014)
Wei, E.-B., Poon, Y.M., Shin, F.G., Gu, G.Q.: Effective properties of piezoelectric composites with periodic structure. Phys. Rev. B. 74, 14107 (2006)
Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27, 507–529 (2015)
Zhou, Z., Ni, Y., Zhu, S., Tong, Z., Sun, J., Xu, X.: An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells. Compos. Struct. 207, 292–303 (2019)
Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)
Xu, Y., Xiao, J., Jia, J., Qiu, P., Zhao, Q.: An analytical method for piezoelectric composites containing doubly periodic piezoelectric fibers with ring-shaped cross-section under antiplane shear and its application. Comput. Mater. Sci. 88, 7–13 (2014)
Ma, X., Wei, G.: Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites. Compos. Struct. 180, 420–428 (2017)
Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)
McCartney, L.N., Crocker, L.E., Wright, L.: Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis. J. Appl. Phys. 125, 184503 (2019)
Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)
Dubey, M.K., Panda, S.: Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure. Arch. Appl. Mech. 88, 2261–2281 (2018)
Sreenivasa Prasath, S., Arockiarajan, A.: Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC). Sens. Actuators A Phys. 214, 31–44 (2014)
Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)
Otero, J.A., Rodríguez-Ramos, R., Monsivais, G.: Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes. Math. Methods Appl. Sci. 40, 3290–3310 (2017)
Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)
Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press, Moscow (1984).. ((in Russian))
Breuer, K., Stommel, M.: RVE modelling of short fiber reinforced thermoplastics with discrete fiber orientation and fiber length distribution. SN Appl. Sci. 2, 91 (2020)
Chen, L., Gu, B., Zhou, J., Tao, J.: Study of the effectiveness of the RVEs for random short fiber reinforced elastomer composites. Fibers Polym. 20, 1467–1479 (2019)
Penta, R., Raum, K., Grimal, Q., Schrof, S., Gerisch, A.: Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir. Biomim. 11, 35004 (2016)
Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Rodríguez-Ramos, R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—II. Piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)
Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)
Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)
Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)
Rodríguez-Ramos, R., de Medeiros, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)
Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)
Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)
Cao, Y., Sha, A., Liu, Z., Li, J., Jiang, W.: Energy output of piezoelectric transducers and pavements under simulated traffic load. J. Clean. Prod. 279, 123508 (2021)
Pan, C.-T., Wang, S.-Y., Yen, C.-K., Kumar, A., Kuo, S.-W., Zheng, J.-L., Wen, Z.-H., Singh, R., Singh, S.P., Khan, M.T., Chaudhary, R.K., Dai, X., Chandra Kaushik, A., Wei, D.-Q., Shiue, Y.-L., Chang, W.-H.: Polyvinylidene fluoride-added ceramic powder composite near-field electrospinned piezoelectric fiber-based low-frequency dynamic sensors. ACS Omega 5, 17090–17101 (2020)
Ma, G., Li, Y., Wang, L., Zhang, J., Li, Z.: Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr. Build. Mater. 241, 117982 (2020)
Omoniyi, O.A., Mansour, R., Reid, A., Liang, L., O’Leary, R., Windmill, J.F.C.: 3D-printing of a piezocomposite material with high filler content for transducer applications. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–3 (2020)
Assagra, Y.A.O., Altafim, R.A.P., do Carmo, J.P., Altafim, R.A.C., Rychkov, D., Wirges, W., Gerhard, R.: A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 27, 1668–1674 (2020)
Rosen, V.B., Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23, 921–928 (2002)
Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J.: Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 88, 351–361 (2011)
Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)
Tofail, S.A.M., Haverty, D., Stanton, K.T., McMonagle, J.B.: Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics. 319, 117–123 (2005)
Lees, S., Prostak, K.S., Ingle, V.K., Kjoller, K.: The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55, 180–189 (1994)
Alexander, B., Daulton, T.L., Genin, G.M., Lipner, J., Pasteris, J.D., Wopenka, B., Thomopoulos, S.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface. 9, 1774–1786 (2012)
Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4, 1253–1256 (2004)
Acknowledgements
L. E. Barraza de León would like to thank CONACYT for scholarship funding. YEA gratefully acknowledges the Program of Postdoctoral Scholarships of DGAPA from UNAM, México. HCM and YEA are grateful to the support of the CONACYT Basic Science Grant A1-S-9232. FJS acknowledges the funding of PAPIIT-DGAPA-UNAM IA100919.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Marcus Aßmus, Victor A. Eremeyev, and Andreas Öchsner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de León, L.E.B., Camacho-Montes, H., Espinosa-Almeyda, Y. et al. Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites. Continuum Mech. Thermodyn. 33, 1957–1978 (2021). https://doi.org/10.1007/s00161-021-01016-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-021-01016-0