Skip to main content
Log in

Cyclic elastoplastic behaviour of 2198-T8 aluminium alloy welded panels

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The friction stir welding (FSW) process generally induces a gradient of properties and a softer behaviour along the welded joint. To design aeronautical structures welded by FSW in fatigue, it is necessary to study the impact of this localized soft behaviour on the overall structure. In this study, the 2198-T8 hardening structural aluminium alloy is considered. Monotonic and cyclic mechanical tests are performed by combining conventional extensometric measurements with digital image correlation (DIC) to measure the local displacement fields around the welded zone. Based on these experimental data, constitutive equations are proposed and identified, zone by zone, across the welded joint. In parallel, a quantification of T1 (\(\hbox {Al}_{\mathrm {2}}\)CuLi) strengthening precipitates is performed in different regions of the joint with a transmission electron microscope in order to identify a relationship between the microstructure and the mechanical parameters. Finally, once all the material parameters are identified, the model is validated by a 3D finite element analysis representative of FSW samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Thomas, W.: www.twi-global.com. TWI (1991)

  2. Mishra, R.S., Mahoney, M.W.: Friction Stir Welding and Processing. Chapter 5, pp. 71–110 (2007)

  3. Alexopoulos, N.D., Migklis, E., Stylianos, A., Myriounis, D.P.: Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. Int. J. Fatigue 56, 95–105 (2013)

    Article  Google Scholar 

  4. Le Jolu, T.: Influence des défauts de soudage sur le comportement plastique et la durée de vie en fatigue de soudures par friction-malaxage d’un alliage Al–Cu–Li. Thèse de doctorat, Mines ParisTech (2011)

  5. Demmouche, Y.: Étude du comportement en fatigue d’assemblages soudés par FSW pour applications aéronautiques, PhD Arts et Métiers ParisTech (2012)

  6. Lockwood, W.D., Tomaz, B., Reynolds, A.P.: Mechanical response of friction stir welded AA2024: experiment and modeling. Mater. Sci. Eng. A 323, 348–353 (2002)

    Article  Google Scholar 

  7. Reynolds, A.P., Duvall, F.: DIC for determination of weld and base metal constitutive behaviour, Department of Mechanical Engineering. University of South Carolina, Columbia S.C. - (1999)

    Google Scholar 

  8. McWilliams, B.A., Yu, J.H., Yen, C.F.: Numerical simulation and experimental characterization of friction stir welding on thick aluminium alloy AA2139-T8 plates. Mater. Sci. Eng. 585, 243–252 (2013)

    Article  Google Scholar 

  9. Leitao, C., Galvao, I., Leal, R.M., Rodrigues, D.M.: Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Mater. Des. 33, 69–74 (2012)

    Article  Google Scholar 

  10. Gallais, C.: Joints soudés par friction malaxage d’alliages d’aluminium de la série 6xxx: caractérisation et modélisation, PhD Université de Grenoble (2005)

  11. Dorin, T.: Mécanismes de durcissement structural par des précipités anisotropes dans un alliage Al–Cu–Li de troisième génération, PhD Université de Grenoble (2013)

  12. Cavaliere, P.., Cabibbo, M.., Panella, F.., Squillace, A..: 2198 Al–Li plates joined by Friction Stir Welding: mechanical and Microstructural Behavior. Mater. Des. 30, 3622–3631 (2009)

    Article  Google Scholar 

  13. Gao, C., Zhu, Z., Han, J., Li, H.: Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy. Mater. Sci. Eng. A 639, 489–499 (2015)

    Article  Google Scholar 

  14. Krasnowski, K., Hamilton, C., Dymek, S.: Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 6082 alloy FSW joints. Arch. Civ. Mech. Eng. 15, 133–141 (2015)

    Article  Google Scholar 

  15. Hardy, H.K., Silcock, J.M.: The phase sections at 500 and \(350^{\circ }\)C of Al rich Al-Cu-Li alloys. J. Inst. Met. 84, 423–428 (1955)

    Google Scholar 

  16. Steuwer, A., Dumont, M., Altenkirch, J., Birosca, S., Deschamps, A., Prangnell, P.B., Withers, P.J.: A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld. Acta Mater. 59, 3002–3011 (2011)

    Article  ADS  Google Scholar 

  17. Gayle, F.W., Heubaum, F.H., Pickens, J.R.: Structure and properties during aging of an ultra-high strength aluminum–copper–lithium–silver–magnesium alloy. Scr. Metall. Mater. 24, 79–84 (1990)

    Article  Google Scholar 

  18. Donnadieu, P., Shao, Y., De Geuser, F., Botton, G.A., Lazar, S., Cheynet, M., de Boissieu, M., Deschamps, A.: Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater. 59, 462–472 (2011)

    Article  ADS  Google Scholar 

  19. Deschamps, A., Decreus, B., De Geuser, F., Dorin, T., Weyland, M.: The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 61, 4010–4021 (2013)

    Article  ADS  Google Scholar 

  20. Decreus, B., Deschamps, A., De Geuser, F., Donnadieu, P., Sigli, C., Weyland, M.: The influence of Cu/Li ratio on precipitation in Al–Cu–Li-x alloys. Acta Mater. 61, 2207–2218 (2013)

    Article  ADS  Google Scholar 

  21. Zhang, S., Zeng, W.D., Yang, W.H., Shi, C.L., Wang, H.J.: Ageing response of a Al–Cu–Li 2198 alloy. Mater. Des. 63, 368–374 (2014)

    Article  Google Scholar 

  22. Gao, C., Ma, Y., Tang, L.-Z., Wang, P., Zhang, X.: Microstructural evolution and mechanical behavior of friction spot welded 2198–T8 Al–Li alloy during aging treatment. Mater. Des. 115, 224–230 (2017)

    Article  Google Scholar 

  23. Schindelin, J., Arganda-Carreras, I., Frise, E., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  24. Decreus, B.: Etude de la précipitation dans les alliages Al-Li-Cu de troisième génération : relations entre microstructures et propriétés mécaniques, PhD Université de Grenoble (2010)

  25. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Mell. 1, 22–31 (1953)

    Google Scholar 

  26. Khan, S., Kintzel, O., Mosler, J.: Experimental and numerical lifetime assessment of Al 2024 sheet. Int. J. Fatigue 37, 112–122 (2011)

    Article  Google Scholar 

  27. ARAMIS Software. www.gom.com

  28. Chen, J.: Ductile Tearing of AA2198 Aluminum–Lithium Sheets for Aeronautic Application. Thèse de doctorat, Mines ParisTech (2011)

    Google Scholar 

  29. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  30. Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S.: Non-Linear Mechanics of Materials. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Altenbach, H., Bolchoun, A., Kolupaev, V.A.: Phenomenological yield and failure criteria. In: Plasticity of Pressure-Sensitive Materials, pp. 49–152. Springer, Berlin (2014)

    Chapter  Google Scholar 

  32. Green, A.E., Naghdi, P.M.: A general theory of elastic–plastic continuum. Arch. Rat. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  Google Scholar 

  33. Nagtegaal, J.C.: On the implementation of inelastic constitutive equations with special reference to large deformation problems. Comput. Methods Appl. Mech. Eng. 33, 469–484 (1982)

    Article  ADS  Google Scholar 

  34. Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological elements. Int. J. Plast. 16, 469–494 (2000)

    Article  Google Scholar 

  35. Shutov, A.V., Kreißig, R.: Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput. Methods Appl. Mech. Eng. 197(21–24), 2015–2029 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26(5), 659–687 (2010)

    Article  Google Scholar 

  37. Shutov, A.V.: Models of nonlinear kinematic hardening based on different versions of the rate-independent Maxwell fluid, In: COMPLAS XIV: Proceedings of the XIV International Conference on Computational Plasticity: Fundamentals and Applications, CIMNE, pp. 385–396 (2017)

  38. Starink, M., Wang, P., Sinclair, I., Gregson, P.: Microstructure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater. 47, 3855–3868 (1999)

    Article  ADS  Google Scholar 

  39. Seidman, D.N., Marquis, E.A., Dunand, D.C.: Precipitation strengthening at ambient and elevated temperatures oh heat-treatable Al(Sc) alloys. Acta Metall. 50, 4021–4035 (2002)

    Google Scholar 

  40. Hansen, N.: Boundary strengthening over five length scales. Adv. Eng. Mater. 7, 815–821 (2005)

    Article  MathSciNet  Google Scholar 

  41. Woo, W., Balogh, L., Ungár, T., Choo, H., Feng, Z.: Grain structure and dislocation density measurements in a friction-stir welded aluminium alloy using X-ray peak profile analysis. Mater. Sci. Eng. A 498, 308–313 (2008)

    Article  Google Scholar 

  42. Huang, J., Ardell, A.: Strengthening mechanisms associated with T1 particles in 2 Al–Li–Cu alloys. J. Phys. 48, 373–383 (1987)

    Google Scholar 

  43. Armstrong, R.W.: Past to present nanoscale connections. Mater Trans 55, 2–12 (1987)

    Article  Google Scholar 

  44. Fleisgher, R.L.: Solution hardening. Acta Metall. 9, 996–1000 (1961)

    Article  Google Scholar 

  45. Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659–669 (1970)

    Article  ADS  Google Scholar 

  46. Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)

    Article  ADS  Google Scholar 

  47. Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947)

    Article  ADS  Google Scholar 

  48. Truant, X.: Etude et modélisation du comportement mécanique de panneaux de structure soudés par friction-malaxage (FSW), PhD Ecole des Mines de Paris (2018)

Download references

Acknowledgements

The authors would like to acknowledge Constellium for providing aluminium sheet metal.

Funding

This research was supported integrally by Onera (Office National d’Etudes et de Recherches Aérospatiales)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Kruch.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Data availability

The datasets generated during the current study are not publicly available due to legal restrictions.

Code availability

Numerical analysis was performed with the Finite Element suite Zset developed by Ecole des Mines and Onera: http://www.zset-software.com.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truant, X., Cailletaud, G., Fournier Dit Chabert, F. et al. Cyclic elastoplastic behaviour of 2198-T8 aluminium alloy welded panels. Continuum Mech. Thermodyn. 33, 1691–1707 (2021). https://doi.org/10.1007/s00161-021-01002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01002-6

Keywords

Navigation