Skip to main content
Log in

Elliptic functions and lattice sums for effective properties of heterogeneous materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Effective properties of fiber-reinforced composites can be estimated by applying the asymptotic homogenization method. Analytical solutions are possible for infinite long circular fibers based on the elliptic quasi-periodic Weierstrass Zeta function. This process leads to numerical convergences issues related to lattice sums calculations. The lattice sums original series converge slowly, which make the calculation difficult. This problem needs to be addressed because effective properties are highly sensitive to these values. Therefore, a systematic review and analysis for the lattice sums are a necessity. In the present work, the Eisenstein–Rayleigh lattices sums are reviewed and numerically implemented for fiber-reinforced composites with parallelogram unit periodic cell whose fibers are centered, or not, at the coordinate origin. Numerical values are reported and compared with available data in the literature obtaining good agreements. In this work, new Eisenstein–Rayleigh lattice sums are obtained that are easy to implement and a set of tables with numerical values are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dasgupta, A., Bhandarkar, S.M.: A generalized self-consistent Mori-Tanaka scheme for fiber-composites with multiple interphases. Mech. Mater. 14, 67–82 (1992)

    Article  Google Scholar 

  2. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  3. Jasiuk, I., Tong, Y.: Effect of interface on the elastic stiffness of composites. Am. Soc. Mech. Eng. Appl. Mech. Div. AMD. 100, 49–54 (1989)

    Google Scholar 

  4. Hassan, S.A., Ahmed, H., Israr, A.: An Analytical Modeling for Effective Thermal Conductivity of Multi-Phase Transversely Isotropic Fiberous Composites Using Generalized Self-Consistent Method. Appl. Mech. Mater. 249–250, 904–909 (2013)

    Google Scholar 

  5. Yan, P., Chen, F.L., Jiang, C.P., Song, F.: An eigenfunction expansion-variational method in prediction of the transverse thermal conductivity of fiber reinforced composites considering interfacial characteristics. Compos. Sci. Technol. 70, 1726–1732 (2010)

    Article  Google Scholar 

  6. Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)

    Article  Google Scholar 

  7. Würkner, M., Berger, H., Gabbert, U.: On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangements. Int. J. Eng. Sci. 49, 322–332 (2011)

    Article  MATH  Google Scholar 

  8. Jayachandran, K.P., Guedes, J.M., Rodrigues, H.C.: Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Sci. Rep. 10, 1276 (2020)

    Article  ADS  Google Scholar 

  9. Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)

    MATH  Google Scholar 

  10. Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press (in Russian) (1984)

  11. Dinzart, F., Sabar, H., Berbenni, S.: Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int. J. Eng. Sci. 100, 136–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Penta, R., Gerisch, A.: The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Contin. Mech. Thermodyn. 29, 187–206 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. López-López, E., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J., Rodríguez-Ramos, R.: Overall longitudinal shear elastic modulus of a 1–3 composite with anisotropic constituents. Int. J. Solids Struct. 50, 2573–2583 (2013)

    Article  MATH  Google Scholar 

  14. Kolpakov, A., Kolpakov, A.: Capacity and Transport in Contrast Composite Structures: Asymptotic analysis and applications. CRC Press, Boca Raton (2009)

    Book  MATH  Google Scholar 

  15. Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland (1978)

  16. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  17. Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  18. Allaire, G., Qatu, M.S.: Reviewer: shape optimization by the homogenization method. Applied Mathematical Sciences. Appl. Mech. Rev. 56, B26–B27 (2003)

    Google Scholar 

  19. Firooz, S., Chatzigeorgiou, G., Meraghni, F., Javili, A.: Bounds on size effects in composites via homogenization accounting for general interfaces. Contin. Mech. Thermodyn. 32, 173–206 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Oleinik, A., Panasenko, G.P., Yosifian, G.A.: Homogenization and asymptotic expansions for solutions of the elasticity system with rapidly oscillating periodic coefficients. Appl. Anal. 15, 15–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)

    Book  MATH  Google Scholar 

  22. Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sabina, F.J., Guinovart-Díaz, R., Espinosa-Almeyda, Y., Rodríguez-Ramos, R., Bravo-Castillero, J., López-Realpozo, J.C.C., Guinovart-Sanjuán, D., Böhlke, T., Sánchez-Dehesa, J.: Effective transport properties for periodic multiphase fiber-reinforced composites with complex constituents and parallelogram unit cells. Int. J. Solids Struct. 204–205, 96–113 (2020)

    Article  Google Scholar 

  24. Espinosa-Almeyda, Y., Camacho-Montes, H., Otero, J.A., Rodríguez-Ramos, R., López-Realpozo, J.C., Guinovart-Díaz, R., Sabina, F.J.: Interphase effect on the effective magneto-electro-elastic properties for three-phase fiber-reinforced composites by a semi-analytical approach. Int. J. Eng. Sci. 154, 103310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)

    Article  Google Scholar 

  26. Rodríguez-Ramos, R., Berger, H., Guinovart-Díaz, R., López-Realpozo, J.C., Würkner, M., Gabbert, U., Bravo-Castillero, J.: Two approaches for the evaluation of the effective properties of elastic composite with parallelogram periodic cells. Int. J. Eng. Sci. 58, 2–10 (2012)

    Article  MATH  Google Scholar 

  27. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, Holland (1953)

    MATH  Google Scholar 

  28. Grigolyuk, E.I., Fil’shtinskii, L.A.: Perforated Plates and shells. M. Nauk (1970)

  29. Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Guinovart-Díaz, R., Bravo-Castillero, J., Rodríguez-Ramos, R., Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II. Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)

  30. Mol’kov, V.A., Gurgova, O.É.: Moduli of elasticity of hybrid unidirectional fibrous composite. Mech. Compos. Mater. 22, 703–706 (1987)

    Article  ADS  Google Scholar 

  31. Rylko, N.: Effect of polydispersity in conductivity of unidirectional cylindres. Arch. Mater. Sci. Eng. 29, 45–52 (2008)

    Google Scholar 

  32. Yan, P., Zhang, Z.A., Chen, F.L., Jiang, C.P., Wang, X.J., Qiu, Z.P.: Effective transport properties of composites with a doubly-periodic array of fiber pairs and with a triangular array of fibers. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 98, 312–329 (2018)

  33. Mityushev, V.: Representative cell in mechanics of composites and generalized Eisenstein–Rayleigh sums. Complex Var. Elliptic Equ. 51, 1033–1045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(211), 481–502 (1982)

  35. Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35, 6036–6048 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Huang, J.: Integral representations of harmonic lattice sums. J. Math. Phys. 40, 5240–5246 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ling, C.-B.: Evaluation at half periods of Weierstrass’ elliptic function with rectangular primitive period-parallelogram. Math. Comput. 14, 67–70 (1960)

    MathSciNet  MATH  Google Scholar 

  38. Ling, C.-B., Tsai, C.-P.: Evaluation at Half Periods of Weierstrass’ elliptic function with rhombic primitive period-parallelogram. Math. Comput. 18, 433–440 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Ling, C.-B.: Evaluation at Half periods of Weierstrass’ elliptic functions with double periods 1 and \(\text{ e}^{{\rm i\alpha }}\). Math. Comput. 19, 658–661 (1965)

    MATH  Google Scholar 

  40. Ling, C.B.: Tables of values of \(\sigma _{2}\) relating to Weierstrass’ elliptic function. Math. Comput. 19, 123–127 (1965)

    MathSciNet  Google Scholar 

  41. Movchan, A.B., Nicorovici, N.A., McPhedran, R.C.: Green’s tensors and lattice sums for electrostatics and elastodynamics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453, 643–662 (1997)

  42. Perrins, W., McKenzie, D., McPhedran, R.: Transport properties of regular arrays of cylinders. Proc. R. Soc. A Math. Phys. Eng. Sci. 369, 207–225 (1979)

  43. Rogosin, S., Dubatovskaya, M., Pesetskaya, E.: Eisenstein sums and functions and their application at the study of heat conduction in composites. Š’iauliai Math. Semin. 4, 167–187 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Godin, Y.A.: The effective conductivity of a periodic lattice of circular inclusions. J. Math. Phys. 53, 63703 (2012)

    Article  MathSciNet  Google Scholar 

  45. Godin, Y.A.: Effective properties of periodic tubular structures. Q. J. Mech. Appl. Math. 69, 181–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, P., Smith, M., McPhedran, R.: Evaluation and regularization of generalized Eisenstein series and application to 2D cylindrical harmonic sums. arXiv Math. Phys. (2016)

  47. Borwein, J.M., Glasser, M.L., McPhedran, R.C., Wan, J.G., Zucker, I.J.: Lattice Sums Then and Now. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  48. Yakubovich, S., Drygas, P., Mityushev, V.: Closed-form evaluation of two-dimensional static lattice sums. Proc. R. Soc. A Math. Phys. Eng. Sci. 472, 20160510 (2016)

  49. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  50. López-Realpozo, J.C., Rodríguez-Ramos, R., Quintero Roba, A.J., Brito-Santana, H., Guinovart-Díaz, R., Tita, V., Lebon, F., Camacho-Montes, H., Espinosa-Almeyda, Y., Bravo-Castillero, J., Sabina, F.J.: Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts. Meccanica 55, 125–138 (2020)

    Article  MathSciNet  Google Scholar 

  51. Qiu, J., Tang, X., Chen, H., Liu, X., Hu, Z.: A tunable broadband magnetoelectric and electromagnetic hybrid vibration energy harvester based on nanocrystalline soft magnetic film. Surf. Coatings Technol. 320, 447–451 (2017)

    Article  Google Scholar 

  52. Rodriguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C., Bravo-Castillero, J., Sabina, F.J., Lebon, F., Dumont, S., Berger, H., Gabbert, U., Wu, M.: Characterization of piezoelectric composites with mechanical and electrical imperfect contacts. J. Compos. Mater. 50, 1–23 (2016)

    Article  Google Scholar 

  53. Guinovart-Díaz, R., Rodríguez-Ramos, R., López-Realpozo, J.C., Bravo-Castillero, J., Otero, J.A., Sabina, F.J., Lebon, F., Dumont, S.: Analysis of fibrous elastic composites with nonuniform imperfect adhesion. Acta Mech. 227, 57–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hofer, U., Luger, M., Traxl, R., Lackner, R.: Closed-form expressions for effective viscoelastic properties of fiber-reinforced composites considering fractional matrix behavior. Mech. Mater. 127, 14–25 (2018)

    Article  Google Scholar 

  55. Markushevich, A.I.: Theory of Functions of a Complex Variable. Prentice-Hall (1967)

  56. Corson, E.T.: An Introduction to the Theory of Funtions of a Complex Variable. Clarendon Press, Oxford (1935)

    Google Scholar 

  57. Weil, A.: Elliptic Functions according to Eisenstein and Kronecker. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  58. López-Realpozo, J.C., Rodríguez-Ramos, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Sabina, F.J., Lebon, F., Dumont, S., Sevostianov, I.: Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers. Int. J. Solids Struct. 51, 1253–1262 (2014)

    Article  Google Scholar 

  59. Rodríguez-Ramos, R., Yan, P., López-Realpozo, J.C., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F.J., Jiang, C.P.: Two analytical models for the study of periodic fibrous elastic composite with different unit cells. Compos. Struct. 93, 709–714 (2011)

    Article  Google Scholar 

  60. Espinosa-Almeyda, Y., Camacho-Montes, H., Rodríguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C., Bravo-Castillero, J., Sabina, F.J.: Influence of imperfect interface and fiber distribution on the antiplane effective magneto-electro-elastic properties for fiber reinforced composites. Int. J. Solids Struct. 112, 155–168 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author YEA gratefully acknowledges the Program of Postdoctoral Scholarships of DGAPA from UNAM, México. HCM is grateful to the support of the CONACYT Basic science grant A1-S-9232. FJS thanks the funding of DGAPA, UNAM. This work was supported by the project PAPIIT-DGAPA-UNAM IA100919. The author is also grateful to M. Sc. Suset Rodríguez Alemán for computational assistance. Thanks to the Department of Mathematics and Mechanics, IIMAS-UNAM, for its support and Ramiro Chávez Tovar and Ana Pérez Arteaga for computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez-Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The numerical sensitivity of the lattice sums \(S_{k+p}\) when \(\left| \tau \right| \) increases is performed through an analysis of the numerical values of the infinite series \(G^{-n}\left( \tau \right) =\sum \limits _{t=1}^{+\infty } {\frac{\mathrm{1}}{\sin ^{n}\left( {it\tau \pi } \right) }} ,\quad n=k+p\), \(\left( {k+p=2,4,6,\ldots } \right) \) which are parts of the \(S_{k+p}\) expressions.

In Table 8, an analysis of the numerical sensitivity of the \(G^{-n}\left( \tau \right) \) is reported for different \(\left| \tau \right| \) values and numbers of terms N of the sums. As it is observed, for a fixed \(\left| \tau \right| \) only a few terms N are needed to obtain the sum value. Also, as \(\left| \tau \right| \) increases, the required number of terms is getting lower and the sums tend to cero. Then, \(\left| \tau \right| \rightarrow \infty \) implies \(G_{N}^{-n} \left( \tau \right) =\sum \limits _{t=1}^N {\frac{\mathrm{1}}{\sin ^{\mathrm{k+p}}\left( {it\tau \pi } \right) }} \rightarrow 0\) for all values of \(N\ge 1\). Therefore, from Eqs. (32)–(34), it is observed that the lattice sums \(S_{k+p} \) is a linear combination of the sums \(G^{-n}\left( \tau \right) \) to any period ratio\(\left| \tau \right| \); thus, when \(\left| \tau \right| \rightarrow \infty \) implies that \(S_{2} =\frac{2\pi ^{2}}{\omega _{1}^{2} }\left[ {\frac{1}{6}+\sum \limits _{t=1}^\infty {\frac{1}{\mathrm{sin}^{\mathrm{2}}\left( {it\tau \pi } \right) }} } \right] \rightarrow \frac{\pi ^{2}}{3\omega _{1}^{2} }\), \(S_{4} =\frac{2\pi ^{\mathrm{4}}}{\omega _{1}^{4} }\left[ {\frac{1}{90}+\sum \limits _{t=\hbox {1}}^\infty {\left( {\frac{1}{{\mathrm{{si}}{\mathrm{{n}}^\mathrm{{4}}}\left( {it\tau \pi } \right) }} - \frac{2}{{3\mathrm{{si}}{\mathrm{{n}}^\mathrm{{2}}}\left( {it\tau \pi } \right) }}} \right) } } \right] \rightarrow \frac{{{\pi ^\mathrm{{4}}}}}{{45\omega _1^4}}\), and \(S_{6} =\frac{2\pi ^{\mathrm{6}}}{\omega _{1}^{6} }\left[ {\frac{1}{945}+\sum \limits _{t=\hbox {1}}^\infty {\left( {\frac{2}{{\mathrm{{15si}}{\mathrm{{n}}^\mathrm{{2}}}\left( {it\tau \pi } \right) }} + \sum \limits _{m = 2}^3 {\frac{{{{\left( { - 1} \right) }^{m + 1}}}}{{\mathrm{{si}}{\mathrm{{n}}^{2m}}\left( {it\tau \pi } \right) }}} } \right) } } \right] \rightarrow \frac{{2{\pi ^\mathrm{{6}}}}}{{945\omega _1^6}}\).

For \(\omega _{1} =1\), we have that \(S_{2} \rightarrow \frac{\pi ^{2}}{3}\approx \hbox {3.289868133696453}\), \(S_{4} \rightarrow \frac{\pi ^{\mathrm{4}}}{45}\approx \hbox {2.164646467422276}\), and \(S_{6} \rightarrow \frac{2\pi ^{\mathrm{6}}}{945}\approx \hbox {2.034686123968898}\), which are the values reported in Table 2 when \(\left| \tau \right| \ge 6\). The remaining values of \(S_{k+p}\) can be computed by the recursive formula Eq. (37). For these cases, a numerical precision of \(1\times 10^{^{-8}}\) is considered.

Table 8 Numerical values of the series \(G^{-n}\left( \tau \right) \) for different period ratios \(\left| \tau \right| \) and number of terms N of the sums. The \((\times 10^{n})\) under the \(\left| \tau \right| \) is a factor that multiplies the sum value

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Almeyda, Y., Rodríguez-Ramos, R., Camacho-Montes, H. et al. Elliptic functions and lattice sums for effective properties of heterogeneous materials. Continuum Mech. Thermodyn. 33, 1621–1636 (2021). https://doi.org/10.1007/s00161-021-00997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00997-2

Keywords

Navigation