Abstract
Effective properties of fiber-reinforced composites can be estimated by applying the asymptotic homogenization method. Analytical solutions are possible for infinite long circular fibers based on the elliptic quasi-periodic Weierstrass Zeta function. This process leads to numerical convergences issues related to lattice sums calculations. The lattice sums original series converge slowly, which make the calculation difficult. This problem needs to be addressed because effective properties are highly sensitive to these values. Therefore, a systematic review and analysis for the lattice sums are a necessity. In the present work, the Eisenstein–Rayleigh lattices sums are reviewed and numerically implemented for fiber-reinforced composites with parallelogram unit periodic cell whose fibers are centered, or not, at the coordinate origin. Numerical values are reported and compared with available data in the literature obtaining good agreements. In this work, new Eisenstein–Rayleigh lattice sums are obtained that are easy to implement and a set of tables with numerical values are given.
Similar content being viewed by others
References
Dasgupta, A., Bhandarkar, S.M.: A generalized self-consistent Mori-Tanaka scheme for fiber-composites with multiple interphases. Mech. Mater. 14, 67–82 (1992)
Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)
Jasiuk, I., Tong, Y.: Effect of interface on the elastic stiffness of composites. Am. Soc. Mech. Eng. Appl. Mech. Div. AMD. 100, 49–54 (1989)
Hassan, S.A., Ahmed, H., Israr, A.: An Analytical Modeling for Effective Thermal Conductivity of Multi-Phase Transversely Isotropic Fiberous Composites Using Generalized Self-Consistent Method. Appl. Mech. Mater. 249–250, 904–909 (2013)
Yan, P., Chen, F.L., Jiang, C.P., Song, F.: An eigenfunction expansion-variational method in prediction of the transverse thermal conductivity of fiber reinforced composites considering interfacial characteristics. Compos. Sci. Technol. 70, 1726–1732 (2010)
Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)
Würkner, M., Berger, H., Gabbert, U.: On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangements. Int. J. Eng. Sci. 49, 322–332 (2011)
Jayachandran, K.P., Guedes, J.M., Rodrigues, H.C.: Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Sci. Rep. 10, 1276 (2020)
Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)
Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press (in Russian) (1984)
Dinzart, F., Sabar, H., Berbenni, S.: Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int. J. Eng. Sci. 100, 136–151 (2016)
Penta, R., Gerisch, A.: The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Contin. Mech. Thermodyn. 29, 187–206 (2017)
López-López, E., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J., Rodríguez-Ramos, R.: Overall longitudinal shear elastic modulus of a 1–3 composite with anisotropic constituents. Int. J. Solids Struct. 50, 2573–2583 (2013)
Kolpakov, A., Kolpakov, A.: Capacity and Transport in Contrast Composite Structures: Asymptotic analysis and applications. CRC Press, Boca Raton (2009)
Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland (1978)
Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)
Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)
Allaire, G., Qatu, M.S.: Reviewer: shape optimization by the homogenization method. Applied Mathematical Sciences. Appl. Mech. Rev. 56, B26–B27 (2003)
Firooz, S., Chatzigeorgiou, G., Meraghni, F., Javili, A.: Bounds on size effects in composites via homogenization accounting for general interfaces. Contin. Mech. Thermodyn. 32, 173–206 (2020)
Oleinik, A., Panasenko, G.P., Yosifian, G.A.: Homogenization and asymptotic expansions for solutions of the elasticity system with rapidly oscillating periodic coefficients. Appl. Anal. 15, 15–32 (1983)
Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)
Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)
Sabina, F.J., Guinovart-Díaz, R., Espinosa-Almeyda, Y., Rodríguez-Ramos, R., Bravo-Castillero, J., López-Realpozo, J.C.C., Guinovart-Sanjuán, D., Böhlke, T., Sánchez-Dehesa, J.: Effective transport properties for periodic multiphase fiber-reinforced composites with complex constituents and parallelogram unit cells. Int. J. Solids Struct. 204–205, 96–113 (2020)
Espinosa-Almeyda, Y., Camacho-Montes, H., Otero, J.A., Rodríguez-Ramos, R., López-Realpozo, J.C., Guinovart-Díaz, R., Sabina, F.J.: Interphase effect on the effective magneto-electro-elastic properties for three-phase fiber-reinforced composites by a semi-analytical approach. Int. J. Eng. Sci. 154, 103310 (2020)
Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)
Rodríguez-Ramos, R., Berger, H., Guinovart-Díaz, R., López-Realpozo, J.C., Würkner, M., Gabbert, U., Bravo-Castillero, J.: Two approaches for the evaluation of the effective properties of elastic composite with parallelogram periodic cells. Int. J. Eng. Sci. 58, 2–10 (2012)
Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, Holland (1953)
Grigolyuk, E.I., Fil’shtinskii, L.A.: Perforated Plates and shells. M. Nauk (1970)
Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Guinovart-Díaz, R., Bravo-Castillero, J., Rodríguez-Ramos, R., Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II. Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)
Mol’kov, V.A., Gurgova, O.É.: Moduli of elasticity of hybrid unidirectional fibrous composite. Mech. Compos. Mater. 22, 703–706 (1987)
Rylko, N.: Effect of polydispersity in conductivity of unidirectional cylindres. Arch. Mater. Sci. Eng. 29, 45–52 (2008)
Yan, P., Zhang, Z.A., Chen, F.L., Jiang, C.P., Wang, X.J., Qiu, Z.P.: Effective transport properties of composites with a doubly-periodic array of fiber pairs and with a triangular array of fibers. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 98, 312–329 (2018)
Mityushev, V.: Representative cell in mechanics of composites and generalized Eisenstein–Rayleigh sums. Complex Var. Elliptic Equ. 51, 1033–1045 (2006)
Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(211), 481–502 (1982)
Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35, 6036–6048 (1994)
Huang, J.: Integral representations of harmonic lattice sums. J. Math. Phys. 40, 5240–5246 (1999)
Ling, C.-B.: Evaluation at half periods of Weierstrass’ elliptic function with rectangular primitive period-parallelogram. Math. Comput. 14, 67–70 (1960)
Ling, C.-B., Tsai, C.-P.: Evaluation at Half Periods of Weierstrass’ elliptic function with rhombic primitive period-parallelogram. Math. Comput. 18, 433–440 (1964)
Ling, C.-B.: Evaluation at Half periods of Weierstrass’ elliptic functions with double periods 1 and \(\text{ e}^{{\rm i\alpha }}\). Math. Comput. 19, 658–661 (1965)
Ling, C.B.: Tables of values of \(\sigma _{2}\) relating to Weierstrass’ elliptic function. Math. Comput. 19, 123–127 (1965)
Movchan, A.B., Nicorovici, N.A., McPhedran, R.C.: Green’s tensors and lattice sums for electrostatics and elastodynamics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453, 643–662 (1997)
Perrins, W., McKenzie, D., McPhedran, R.: Transport properties of regular arrays of cylinders. Proc. R. Soc. A Math. Phys. Eng. Sci. 369, 207–225 (1979)
Rogosin, S., Dubatovskaya, M., Pesetskaya, E.: Eisenstein sums and functions and their application at the study of heat conduction in composites. Š’iauliai Math. Semin. 4, 167–187 (2009)
Godin, Y.A.: The effective conductivity of a periodic lattice of circular inclusions. J. Math. Phys. 53, 63703 (2012)
Godin, Y.A.: Effective properties of periodic tubular structures. Q. J. Mech. Appl. Math. 69, 181–193 (2016)
Chen, P., Smith, M., McPhedran, R.: Evaluation and regularization of generalized Eisenstein series and application to 2D cylindrical harmonic sums. arXiv Math. Phys. (2016)
Borwein, J.M., Glasser, M.L., McPhedran, R.C., Wan, J.G., Zucker, I.J.: Lattice Sums Then and Now. Cambridge University Press, Cambridge (2013)
Yakubovich, S., Drygas, P., Mityushev, V.: Closed-form evaluation of two-dimensional static lattice sums. Proc. R. Soc. A Math. Phys. Eng. Sci. 472, 20160510 (2016)
Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (2000)
López-Realpozo, J.C., Rodríguez-Ramos, R., Quintero Roba, A.J., Brito-Santana, H., Guinovart-Díaz, R., Tita, V., Lebon, F., Camacho-Montes, H., Espinosa-Almeyda, Y., Bravo-Castillero, J., Sabina, F.J.: Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts. Meccanica 55, 125–138 (2020)
Qiu, J., Tang, X., Chen, H., Liu, X., Hu, Z.: A tunable broadband magnetoelectric and electromagnetic hybrid vibration energy harvester based on nanocrystalline soft magnetic film. Surf. Coatings Technol. 320, 447–451 (2017)
Rodriguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C., Bravo-Castillero, J., Sabina, F.J., Lebon, F., Dumont, S., Berger, H., Gabbert, U., Wu, M.: Characterization of piezoelectric composites with mechanical and electrical imperfect contacts. J. Compos. Mater. 50, 1–23 (2016)
Guinovart-Díaz, R., Rodríguez-Ramos, R., López-Realpozo, J.C., Bravo-Castillero, J., Otero, J.A., Sabina, F.J., Lebon, F., Dumont, S.: Analysis of fibrous elastic composites with nonuniform imperfect adhesion. Acta Mech. 227, 57–73 (2016)
Hofer, U., Luger, M., Traxl, R., Lackner, R.: Closed-form expressions for effective viscoelastic properties of fiber-reinforced composites considering fractional matrix behavior. Mech. Mater. 127, 14–25 (2018)
Markushevich, A.I.: Theory of Functions of a Complex Variable. Prentice-Hall (1967)
Corson, E.T.: An Introduction to the Theory of Funtions of a Complex Variable. Clarendon Press, Oxford (1935)
Weil, A.: Elliptic Functions according to Eisenstein and Kronecker. Springer, Berlin (1976)
López-Realpozo, J.C., Rodríguez-Ramos, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Sabina, F.J., Lebon, F., Dumont, S., Sevostianov, I.: Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers. Int. J. Solids Struct. 51, 1253–1262 (2014)
Rodríguez-Ramos, R., Yan, P., López-Realpozo, J.C., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F.J., Jiang, C.P.: Two analytical models for the study of periodic fibrous elastic composite with different unit cells. Compos. Struct. 93, 709–714 (2011)
Espinosa-Almeyda, Y., Camacho-Montes, H., Rodríguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C., Bravo-Castillero, J., Sabina, F.J.: Influence of imperfect interface and fiber distribution on the antiplane effective magneto-electro-elastic properties for fiber reinforced composites. Int. J. Solids Struct. 112, 155–168 (2017)
Acknowledgements
The author YEA gratefully acknowledges the Program of Postdoctoral Scholarships of DGAPA from UNAM, México. HCM is grateful to the support of the CONACYT Basic science grant A1-S-9232. FJS thanks the funding of DGAPA, UNAM. This work was supported by the project PAPIIT-DGAPA-UNAM IA100919. The author is also grateful to M. Sc. Suset Rodríguez Alemán for computational assistance. Thanks to the Department of Mathematics and Mechanics, IIMAS-UNAM, for its support and Ramiro Chávez Tovar and Ana Pérez Arteaga for computational assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
The numerical sensitivity of the lattice sums \(S_{k+p}\) when \(\left| \tau \right| \) increases is performed through an analysis of the numerical values of the infinite series \(G^{-n}\left( \tau \right) =\sum \limits _{t=1}^{+\infty } {\frac{\mathrm{1}}{\sin ^{n}\left( {it\tau \pi } \right) }} ,\quad n=k+p\), \(\left( {k+p=2,4,6,\ldots } \right) \) which are parts of the \(S_{k+p}\) expressions.
In Table 8, an analysis of the numerical sensitivity of the \(G^{-n}\left( \tau \right) \) is reported for different \(\left| \tau \right| \) values and numbers of terms N of the sums. As it is observed, for a fixed \(\left| \tau \right| \) only a few terms N are needed to obtain the sum value. Also, as \(\left| \tau \right| \) increases, the required number of terms is getting lower and the sums tend to cero. Then, \(\left| \tau \right| \rightarrow \infty \) implies \(G_{N}^{-n} \left( \tau \right) =\sum \limits _{t=1}^N {\frac{\mathrm{1}}{\sin ^{\mathrm{k+p}}\left( {it\tau \pi } \right) }} \rightarrow 0\) for all values of \(N\ge 1\). Therefore, from Eqs. (32)–(34), it is observed that the lattice sums \(S_{k+p} \) is a linear combination of the sums \(G^{-n}\left( \tau \right) \) to any period ratio\(\left| \tau \right| \); thus, when \(\left| \tau \right| \rightarrow \infty \) implies that \(S_{2} =\frac{2\pi ^{2}}{\omega _{1}^{2} }\left[ {\frac{1}{6}+\sum \limits _{t=1}^\infty {\frac{1}{\mathrm{sin}^{\mathrm{2}}\left( {it\tau \pi } \right) }} } \right] \rightarrow \frac{\pi ^{2}}{3\omega _{1}^{2} }\), \(S_{4} =\frac{2\pi ^{\mathrm{4}}}{\omega _{1}^{4} }\left[ {\frac{1}{90}+\sum \limits _{t=\hbox {1}}^\infty {\left( {\frac{1}{{\mathrm{{si}}{\mathrm{{n}}^\mathrm{{4}}}\left( {it\tau \pi } \right) }} - \frac{2}{{3\mathrm{{si}}{\mathrm{{n}}^\mathrm{{2}}}\left( {it\tau \pi } \right) }}} \right) } } \right] \rightarrow \frac{{{\pi ^\mathrm{{4}}}}}{{45\omega _1^4}}\), and \(S_{6} =\frac{2\pi ^{\mathrm{6}}}{\omega _{1}^{6} }\left[ {\frac{1}{945}+\sum \limits _{t=\hbox {1}}^\infty {\left( {\frac{2}{{\mathrm{{15si}}{\mathrm{{n}}^\mathrm{{2}}}\left( {it\tau \pi } \right) }} + \sum \limits _{m = 2}^3 {\frac{{{{\left( { - 1} \right) }^{m + 1}}}}{{\mathrm{{si}}{\mathrm{{n}}^{2m}}\left( {it\tau \pi } \right) }}} } \right) } } \right] \rightarrow \frac{{2{\pi ^\mathrm{{6}}}}}{{945\omega _1^6}}\).
For \(\omega _{1} =1\), we have that \(S_{2} \rightarrow \frac{\pi ^{2}}{3}\approx \hbox {3.289868133696453}\), \(S_{4} \rightarrow \frac{\pi ^{\mathrm{4}}}{45}\approx \hbox {2.164646467422276}\), and \(S_{6} \rightarrow \frac{2\pi ^{\mathrm{6}}}{945}\approx \hbox {2.034686123968898}\), which are the values reported in Table 2 when \(\left| \tau \right| \ge 6\). The remaining values of \(S_{k+p}\) can be computed by the recursive formula Eq. (37). For these cases, a numerical precision of \(1\times 10^{^{-8}}\) is considered.
Rights and permissions
About this article
Cite this article
Espinosa-Almeyda, Y., Rodríguez-Ramos, R., Camacho-Montes, H. et al. Elliptic functions and lattice sums for effective properties of heterogeneous materials. Continuum Mech. Thermodyn. 33, 1621–1636 (2021). https://doi.org/10.1007/s00161-021-00997-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-021-00997-2