Skip to main content

A semigroup of contractions in elasticity of porous bodies

This article has been updated


The mixed initial-boundary value problem in the context of elasticity of porous bodies having a dipolar structure is considered. By means of a semigroup of contractions, we can obtain some results regarding the existence and uniqueness of solutions for this mixed problem, after proving the equivalence between this problem and a Cauchy problem attached to an abstract equation of evolution. Also, by means of this Cauchy problem, we deduce two continuous dependence results, regarding the supply terms of the original mixed problem and upon initial data.

This is a preview of subscription content, access via your institution.

Change history

  • 05 May 2021

    This article was updated due to the missing funding note.


  1. 1.

    Nunziato, J.W., Cowin, S.C.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  Google Scholar 

  2. 2.

    Cowin, S.C.: Bone Poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  3. 3.

    Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Iesan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)

    Article  Google Scholar 

  6. 6.

    Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  Google Scholar 

  7. 7.

    Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  Google Scholar 

  8. 8.

    Marin, M.: On the minimum principle for dipolar materials with stretch. Nonlinear Anal. Real World Appl. 10, 1572–1578 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Abbas, I., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E Low Dimens. Syst. Nanostruct. 87, 254–260 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    Othman, M.I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermo-elastic porous medium under GN theory. Results Phys. 7, 3863–3872 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Bhatti, M.M. et al.: Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries, Front. Phys., 8, 1–12(2020), Art. No. 95

  12. 12.

    Khan, A.A., et al.: Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Trans. Res. 50(11), 1061–1080 (2019)

    Article  Google Scholar 

  13. 13.

    Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)

    Article  Google Scholar 

  14. 14.

    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Therm. 19(5), 253–271 (2007)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin. Mech. Therm. 28(6), 1645–1657 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Teodorescu-Draghicescu, H., Vlase, S., et al.: Advanced pultruded glass fibers-reinforced isophtalic polyester resin. Mater. Plast. 52(1), 62–64 (2015)

    Google Scholar 

  19. 19.

    Marin, M., Lupu, M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507–518 (1998)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Niculita, C., Vlase, S., et al.: Optimum stacking in a multi-ply laminate used for the skin of adaptive wings. Optoelectron. Adv. Mat. 5(11), 1233–1236 (2011)

    Google Scholar 

  21. 21.

    Marin, M., Stan, G.: Weak solutions in Elasticity of dipolar bodies with stretch. Carpathian J. Math. 29(1), 33–40 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Marin, M., Agarwal, R.P., Mahmoud, S.R., Modeling a microstretch thermo-elastic body with two temperatures, Abstr. Appl. Anal., : 1–7, (2013), p. 583464. Art, ID (2013)

  23. 23.

    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  24. 24.

    Fichera, G.: Existence theorems in elasticity, Handbuch der Physik, vol. VIa-2. Springer, Berlin (1972)

    Google Scholar 

  25. 25.

    Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)

    Book  Google Scholar 

  26. 26.

    Hlavacek, I., Necas, J.: On inequalities of Korn’s type. Arch. Ration. Mech. Anal. 36, 305–334 (1980)

    Article  Google Scholar 

  27. 27.

    Pazy, A.: Semigroups of Linear Operators and Applications. Springer, New York (1983)

    MATH  Google Scholar 

  28. 28.

    Marin, M., Öchsner, A.: Essentials of Partial Differential Equations. Springer, Cham (2019)

    Book  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Marin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A., Ellahi, R. et al. A semigroup of contractions in elasticity of porous bodies. Continuum Mech. Thermodyn. 33, 2027–2037 (2021).

Download citation


  • Equations of evolution
  • Semigroup
  • Contractions
  • Porous bodies
  • Continuous dependence