Skip to main content
Log in

Free high-frequency vibrations of nonlocally elastic beam with varying cross-section area

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the framework of the two-phase theory of nonlocal elasticity we study free high-frequency vibrations of nanobeams with varying cross section. Considering the Helmholtz kernel in the constitutive equation, we reduce the original integro-differential equation to an equivalent six-order differential equation with variable coefficients and derive the pair of additional boundary conditions accounting for the nonlocal edge effects. Applying WKB method, a solution of the boundary-value problem is constructed in the form of superposition of the outer expansion and edge effect integrals with high variability along the beam axis. As an example, a clamped nanobeam with a shape matching to the shape of a slab waveguide in a photonic crystal beam laser is considered. The derived relations for natural frequencies and performed calculations revealed strong effect of both the nonlocal model fraction and the cross-section variability on the correction to natural frequencies calculated within the classical beam theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeong, K.-Y., No, Y.-S., Hwang, Y., Kim, K.S., Seo, M.K., Park, H.-G., Lee, Y.-H.: Electrically driven nanobeam laser. Nat. Commun. 4, 2822 (2013)

    Google Scholar 

  2. Zhang, Y., Khan, M., Huang, Y., Ryou, J., Deotare, P., Dupuis, R., Lončar, M.: Photonic crystal nanobeam lasers. Appl. Phys. Lett. 97, 051104 (2010)

    Article  ADS  Google Scholar 

  3. Gong, Y., Ellis, B., Shambat, G., Sarmiento, T., Harris, J.S., Vučković, J.: Nanobeam photonic crystal cavity quantum dot laser. Opt. Express 18, 8781–8789 (2010)

    Article  ADS  Google Scholar 

  4. Ahn, B.H., Ju-Hyung Kang, J.H., Kim, M.K., Song, J.H., Min, B., Kim, K.S., Lee, Y.H.: One-dimensional parabolic-beam photonic crystal laser. Opt. Express 18, 5654–5660 (2010)

    Article  ADS  Google Scholar 

  5. Qiao, Q., Xia, J., Lee, C., Zhou, G.: Applications of photonic crystal nanobeam cavities for sensing. Micromachines. 9(11), 541 (2018)

    Article  Google Scholar 

  6. Malikan, M., Uglov, N.S., Eremeyev, V.A.: On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int. J. Eng. Sci. 157, 103395 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pfeifer, H., Paraïso, T., Zang, L., Painter, O.: Design of tunable GHz-frequency optomechanical crystal resonators. Opt. Express 24(11), 11407–11419 (2016)

    Article  ADS  Google Scholar 

  8. Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662–662 (2010)

    Article  ADS  Google Scholar 

  9. Lee, H.L., Chang, W.J.: Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelectron. Eng. 88(11), 3214–3218 (2011)

    Article  Google Scholar 

  10. Wang, H.C.: Generalized hypergeometric function solutions on the transverse vibrations of a class of non-uniform beams. J. Appl. Mech. 34E, 702–708 (1967)

    Article  ADS  MATH  Google Scholar 

  11. Gupta, A.K.: Vibration of tapered beams. J. Struct. Eng. 111(1), 19–36 (1985)

    Article  Google Scholar 

  12. Craver, W.L., Jr., Jampala, P.: Transverse vibrations of a linearly tapered cantilever beam with constraining springs. J. Sound Vibr. 166(3), 521–529 (1993)

    Article  ADS  MATH  Google Scholar 

  13. De Rosa, M.A., Auciello, N.M.: Free vibrations of tapered beams with flexible ends. Comput. Struct. 60(2), 197–202 (1996)

    Article  MATH  Google Scholar 

  14. Auciello, N.M., Nole, G.: Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end. J. Sound Vib. 214(1), 105–119 (1998)

    Article  ADS  Google Scholar 

  15. Ece, M.C., Aydogdu, M., Taskin, V.: Vibration of a variable cross-section beam. Mech. Res. Commun. 34(1), 78–84 (2007)

    Article  MATH  Google Scholar 

  16. Caruntu, D.: On nonlinear vibration of nonuniform beam with rectangular cross-section and parabolic thickness variation. In: IUTAM/IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems. Springer, Netherlands, pp. 109–118 (2000)

  17. Elishakoff, I., Johnson, V.: Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass. J. Sound Vib. 286(4), 1057–1066 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Firouz-Abadi, R.D., Haddadpour, H., Novinzadeh, A.B.: An asymptotic solution to transverse free vibrations of variable-section beams. J. Sound Vib. 304(3–5), 530–540 (2007)

    Article  ADS  Google Scholar 

  19. Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B Eng. 42, 801–808 (2011)

    Article  Google Scholar 

  20. Shahba, A., Rajasekaran, S.: Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl. Math. Model. 36(7), 3094–3111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y., Li, X.F.: A new approach for free vibration of axially functionally graded beams with nonuniform cross-section. J. Sound Vib. 329(11), 2291–2303 (2010)

    Article  ADS  Google Scholar 

  22. Huang, Y., Yang, L.-E., Luo, Q.-Z.: Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos. Part B Eng. 45, 1493–1498 (2013)

    Article  Google Scholar 

  23. Akgöz, B.: Civalek, Ö: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  24. Calim, F.F.: Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Compos. Part B: Eng. 98, 472–483 (2016)

    Article  Google Scholar 

  25. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)

    Article  MATH  Google Scholar 

  27. Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocation. In: Kröner, E (ed) Mechanics of Generalized Continua. Proceedings of IUTAM Symposium. Springer, Berlin (1968)

  28. Krumhansl, J.A.: Some considerations on the relations between solid state physics and generalized continuum mechanics. In: Kröner, E (ed).Mechanics of Generalized Continua. Proceedings of IUTAM Symposium. Springer, Berlin (1968)

  29. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  31. Xu, M.: Free transverse vibrations of nano-to-micron scale beams. Proc. Royal Soc. A. 462, 2977–2995 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  33. Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology. 18, 1–9 (2007)

    Google Scholar 

  34. Aydogdu, M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E. 41, 861–864 (2009)

    Article  Google Scholar 

  35. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40(5–6), 4109–4128 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  ADS  Google Scholar 

  37. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A. 363(3), 236–242 (2007)

    Article  ADS  Google Scholar 

  38. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology. 19(34), 345703 (2008)

    Article  Google Scholar 

  39. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

  41. Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  42. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  Google Scholar 

  43. Eringen, A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)

    Google Scholar 

  44. Zhu, X., Wang, Y., Dai, H.-H.: Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int. J. Eng. Sci. 116, 130–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mikhasev, G., Avdeichik, E., Prikazchikov, D.: Free vibrations of nonlocally elastic rods. Math. Mech. Solids. 24(5), 1279–1293 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Fernández-Sáez, J., Zaera, R.: Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int. J. Eng. Sci. 119, 232–248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mikhasev, G., Nobili, A.: On the solution of the purely nonlocal theory of beam elasticity as a limiting case of the two-phase theory. Int. J. Solids Struct. 190, 47–57 (2020)

    Article  Google Scholar 

  48. Murmu, T., Pradhan, S.C.: Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Physica E 41(8), 1451–1456 (2009)

    Article  ADS  Google Scholar 

  49. Hashemi, S.H., Khaniki, H.B.: Analytical solution for free vibration of a variable cross-section nonlocal nanobeam. Int. J. Eng.-Trans. B: Appl. 29(5), 688 (2016)

    Google Scholar 

  50. Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39(1), 23–27 (2012)

    Article  MATH  Google Scholar 

  51. Trabelssi, M., El-Borgi, S., Fernandes, R., Ke, L.-L.: Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation. Compos. B Eng. 157, 331–349 (2019)

    Article  Google Scholar 

  52. Hoseini, S.H., Pirbodaghi, T., Ahmadian, S.H., Farrahi, G.H.: On the large amplitude free vibrations of tapered beams: an analytical approach. Mech. Res. Commun. 36(8), 892–897 (2009)

    Article  MATH  Google Scholar 

  53. Chakraverty, S., Behera, L.: Free vibration of non-uniform nanobeams using Rayleigh-Ritz method. Physica E 67, 38–46 (2015)

    Article  ADS  Google Scholar 

  54. Alshorbagy, A.E., Eltaher, M.A., Mahmoud, F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Aria, A.I., Friswell, M.I.: A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Compos. B Eng. 166, 233–246 (2019)

    Article  Google Scholar 

  56. Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. B Eng. 52, 84–92 (2013)

    Article  Google Scholar 

  57. Zeighampour, H., Beni, Y.T.: Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl. Math. Model. 39(18), 5354–5369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Shafiei, N., Kazemi, M., Safi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int. J. Eng. Sci. 106, 77–94 (2016)

    Article  Google Scholar 

  59. Andrianov, I.V., Awrejcewicz, J., Weichert, D. Improved continuous models for discrete media. Math. Probl. Eng. 2010, Article ID 986242 (2009)

  60. Simşek, M.: Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory. Compos. Struct. 224, 111041 (2019)

    Article  Google Scholar 

  61. Zhang, P., Qing, H., Gao, C.-F.: Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 245, 112362 (2020)

    Article  Google Scholar 

  62. Hache, F., Challamel, N., Elishakoff, I.: Asymptotic derivation of nonlocal beam models from two-dimensional nonlocal elasticity. Math. Mech. Solids. 24(8), 2425–2443 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Malikan, M., Eremeyev, V.: A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Compos. Struct. 249, 112486 (2020)

    Article  Google Scholar 

  64. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. B Eng. 43, 131–1328 (2012)

    Article  Google Scholar 

  65. Altenbach, H., Bîrsan, M., Eremeyev, V.A.: On a thermodynamic theory of rods with two temperature fields. Acta Mech. 223, 1583–1596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Fakher, M., Behdad, S., Naderi, A., Hosseini-Hashemi, S.: Thermal vibration and buckling analysis of two-phase nanobeams embedded in size dependent elastic medium. Int. J. Mech. Sci. 171, 105381 (2020)

    Article  Google Scholar 

  67. Chebakov, R., Kaplunov, J., Rogerson, G.A.: A non-local asymptotic theory for thin elastic plates. Proc. R. Soc. Lond. A 473(2203), 20170249 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Gol’denveizer, A.L., Lidsky, V.B., Tovstik, P.E.: Free Vibrations of Thin Elastic Shells (in Russ.). Nauka, Moscow (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi Mikhasev.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author acknowledges the support from the State Program of Scientific Investigations in Belarus “Convergence”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhasev, G. Free high-frequency vibrations of nonlocally elastic beam with varying cross-section area. Continuum Mech. Thermodyn. 33, 1299–1312 (2021). https://doi.org/10.1007/s00161-021-00977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00977-6

Keywords

Navigation