First consider static equilibrium of a semi-infinite three-layered strip (\(0\leqslant x_1<+\infty \), \(-h_3-h_2/ 2 \leqslant x_2 \leqslant h_2/ 2 + h_1\)) with the geometrical and mechanical properties specified in Sect. 2. Let the strip faces are traction free, while its left edge \(x_1=0\) is subject to prescribed stress \(p(x_2)\)
$$\begin{aligned} \sigma _{13}^q \big |_{x_1=0} = p(x_2), \quad q=1,2,3. \end{aligned}$$
(46)
Our goal is to find the so-called decay conditions on the function p when
$$\begin{aligned} \sigma _{13}^q \big |_{x_1=+\infty }=0, \quad q=1,2,3. \end{aligned}$$
(47)
Moreover, we require the related boundary layer to be localised over the narrow vicinity of the edge of width h (\(h \sim h_1 \sim h_2 \sim h_3\)), which does not depend on the small contrast parameter \(\mu \), defined above. Thus, we assume
$$\begin{aligned} \dfrac{\partial }{\partial x_1} \sim \dfrac{\partial }{\partial x_2} \sim \dfrac{1}{h}. \end{aligned}$$
(48)
Let us start from the static counterpart of the equations (1), i.e.
$$\begin{aligned} \dfrac{\partial \sigma _{13}^q}{\partial x_1} + \dfrac{\partial \sigma _{23}^q}{\partial x_2} = 0, \quad q=1,2,3, \end{aligned}$$
(49)
subject to homogeneous boundary conditions along the faces (4), setting \(F_1=F_3=0\) and continuity conditions (3), together with (46) and (47). Integrating the equation of motion for the upper layer (\(q=1\)) over the domain \(0 \leqslant x_1 < + \infty \) and \(h_2 \leqslant x_2 \leqslant h_2+h_1\) and applying the aforementioned continuity and boundary conditions, we obtain
$$\begin{aligned}&\int _{0}^{+\infty } \int _{h_2 / 2}^{h_2 / 2+h_1} \left( \dfrac{\partial \sigma _{13}^1}{\partial x_1} + \dfrac{\partial \sigma _{23}^1}{\partial x_2} \right) \mathrm{d}x_1 \mathrm{d}x_2\nonumber \\&\quad =\int _{h_2 / 2}^{h_2 / 2+h_1}\sigma _{13}^1 \Big |_{x_1=0}^{+\infty }~\mathrm{d}x_2 + \int _{0}^{+\infty }\sigma _{23}^1 \Big |_{x_2=h_2 / 2}^{h_2 / 2+h_1} ~\mathrm{d}x_1 \nonumber \\&\quad =-\int _{h_2 / 2}^{h_2 / 2+h_1} p(x_2) \mathrm{d}x_2 - \int _{0}^{+\infty } \sigma _{23}^1\Big |_{x_2=h_2 / 2} \mathrm{d}x_1=0. \end{aligned}$$
(50)
Hence,
$$\begin{aligned} \int _{0}^{+\infty } \sigma _{23}^1\Big |_{x_2=h_2 / 2} \mathrm{d}x_1 = -\int _{h_2 / 2}^{h_2 / 2+h_1} p(x_2) \mathrm{d}x_2 \end{aligned}$$
(51)
Similarly, for the bottom layer (\(q=3\)) we derive
$$\begin{aligned}&\int _{0}^{+\infty } \int _{-h_2 / 2-h_3}^{-h_2 / 2} \left( \dfrac{\partial \sigma _{13}^3}{\partial x_1} + \dfrac{\partial \sigma _{23}^3}{\partial x_2} \right) \mathrm{d}x_1 \mathrm{d}x_2\nonumber \\&\quad =-\int _{-h_2 / 2-h_3}^{-h_2 / 2} p(x_2) \mathrm{d}x_2 + \int _{0}^{+\infty } \sigma _{23}^3 \Big |_{x_2=-h_2 / 2} \mathrm{d}x_1=0, \end{aligned}$$
(52)
therefore,
$$\begin{aligned} \int _{0}^{+\infty } \sigma _{23}^3 \Big |_{x_2=-h_2 / 2} \mathrm{d}x_1=\int _{-h_2 / 2-h_3}^{-h_2 / 2} p(x_2) \mathrm{d}x_2. \end{aligned}$$
(53)
For the middle layer (\(q=2\)), we first integrate the associated equation of motion, resulting in
$$\begin{aligned}&\int _{0}^{+\infty } \int _{-h_2 / 2}^{h_2 / 2} \left( \dfrac{\partial \sigma _{13}^2}{\partial x_1} + \dfrac{\partial \sigma _{23}^2}{\partial x_2} \right) \mathrm{d}x_1 \mathrm{d}x_2\nonumber \\&\quad =-\int _{-h_2 / 2}^{h_2 / 2} p(x_2)\mathrm{d}x_2 + \int _0^{+\infty } \sigma _{23}^2\Big |_{x_2=h_2 / 2} \mathrm{d}x_1 - \int _0^{+\infty } \sigma _{23}^2\Big |_{x_2=-h_2 / 2} \mathrm{d}x_1=0. \end{aligned}$$
(54)
Now, we substitute (51) and (53) into the latter, taking into account the continuity conditions. As might be expected, the following exact result corresponds to the conventional decay condition, expressing the classical formulation of the Saint-Venant principle. It manifests self-equilibrium of the external load and is given by
$$\begin{aligned} \int _{-h_2 / 2-h_3}^{h_2 / 2 +h_1}p(x_2) \mathrm{d}x_2 = 0. \end{aligned}$$
(55)
Next, we multiply the equation of motion for the middle layer by \(x_2\) and integrate again over its area. We obtain
$$\begin{aligned}&\int _{0}^{+\infty } \int _{-h_2 / 2}^{h_2 / 2} x_2 \left( \dfrac{\partial \sigma _{13}^2}{\partial x_1} + \dfrac{\partial \sigma _{23}^2}{\partial x_2} \right) \mathrm{d}x_1 \mathrm{d}x_2\nonumber \\&\quad =\int _{-h_2 / 2}^{h_2 / 2}x_2\sigma _{13}^2 \Big |_{x_1=0}^{+\infty } \mathrm{d}x_2 + \int _{0}^{+\infty } \int _{-h_2 / 2}^{h_2 / 2} x_2 \dfrac{\partial \sigma _{23}^2}{\partial x_2} \mathrm{d}x_1 \mathrm{d}x_2 \nonumber \\&\quad =-\int _{-h_2 / 2}^{h_2 / 2} x_2 p(x_2)\mathrm{d}x_2 + \int _0^{+\infty }\left( x_2\sigma _{23}^2\Big |_{x_2=-h_2 / 2}^{h_2 / 2} - \int _{-h_2 / 2}^{h_2 / 2} \sigma _{23}^2 \mathrm{d}x_2 \right) \mathrm{d}x_1\nonumber \\&\quad =-\int _{-h_2 / 2}^{h_2 / 2} x_2 p(x_2)\mathrm{d}x_2 + \dfrac{h_2}{2} \int _{0}^{+\infty } \left( \sigma _{23}^2\Big |_{x_2=h_2 / 2}+\sigma _{23}^2\Big |_{x_2=-h_2 / 2} \right) \mathrm{d}x_1 \nonumber \\&\qquad -\int _0^{+\infty } \int _{-h_2 / 2}^{h_2 / 2} \sigma _{23}^2 \mathrm{d}x_2 \mathrm{d}x_1 \nonumber \\&\qquad \approx -\int _{-h_2 / 2}^{h_2 / 2} x_2 p(x_2)\mathrm{d}x_2 + \dfrac{h_2}{2} \int _{0}^{+\infty } \left( \sigma _{23}^2\Big |_{x_2=h_2 / 2}+\sigma _{23}^2\Big |_{x_2=-h_2 / 2} \right) \mathrm{d}x_1 =0, \end{aligned}$$
(56)
where we have neglected the asymptotically small \(O(\mu )\) term
$$\begin{aligned} \int _0^{+\infty } \int _{-h_2 / 2}^{h_2 / 2} \sigma _{23}^2 \mathrm{d}x_2 \mathrm{d}x_1 = \mu _2 \int _0^{+\infty } u_2 \Big |_{x_2=-h_2 / 2}^{h_2 / 2}\mathrm{d}x_1 \sim \mu . \end{aligned}$$
(57)
This is due to the effect of contrast, resulting in a sort of squeezing of the softer middle layer by the stiff outer layers. In fact, we may readily deduce that in the last formula \(\sigma _{23}^2 \sim p\) while \(u_2(x_1, h_2 / 2) = u_1(x_1, h_2 / 2)\sim \dfrac{h \sigma _{23}^1}{\mu _1} \sim \dfrac{h p}{\mu _1}\) and \(u_2(x_1, -h_2 / 2) = u_3(x_1, -h_2 / 2)\sim \dfrac{h \sigma _{23}^3}{\mu _1} \sim \dfrac{h p}{\mu _1}\). These asymptotic estimations follow from the aforementioned condition on the boundary layer given by (48). Next, substituting (51) and (53) into (54) we obtain the second decay condition on the prescribed edge load p
$$\begin{aligned} \int _{-h_2 / 2}^{h_2 / 2} x_2 p(x_2) \mathrm{d}x_2 + \dfrac{h_2}{2} \int _{h_2 / 2}^{h_2 / 2+h_1}p(x_2)\mathrm{d}x_2 - \dfrac{h_2}{2} \int _{-h_2 / 2-h_3}^{-h_2 / 2} p(x_2) \mathrm{d}x_2=0, \end{aligned}$$
(58)
which is, in contrast with the first "exact" condition (55), is of an asymptotic nature and holds only for high contrast laminates. At \(h_1=h_3\) and \(p(-x_2)=-p(x_2)\), the last formula reduces to decay conditions (88) derived in “Appendix 2” using Laplace transform technique.
It can be easily shown, see e.g. [39], that obtained decay conditions (55) and (58) are also valid at leading order for the low-frequency setup considered in the paper (\(\partial / \partial t \ll h \sqrt{\rho _k / \mu _k}, \quad k=1,2\)). Let us then adopt the latter for deriving the leading order boundary conditions at the edge \(x_1=0\) of the laminate governed by formulae (1)-(4), subject to an arbitrary low-frequency loading \( P(x_2,t)\), i.e.
$$\begin{aligned} \sigma _{13}^{q} \big |_{x_1=0} = P(x_2,t), \quad q=1,2,3. \end{aligned}$$
(59)
It is obvious that the function \(P(x_2,t)\) is not assumed to satisfy two decay conditions above in contrast to the function \(p(x_2)\).
As usual, see [19, 37, 41] for greater detail, insert the discrepancy of the prescribed edge load P and stresses \(\sigma _{13}^q\), resulting from the equations of motion established in Sect. 5, into the decay conditions. Neglecting asymptotically secondary stress \(\sigma _{13}^2\), see formula (17), we set in (55) and (58)
$$\begin{aligned}&p=P-\sigma _{13}^1, \quad \dfrac{h_2}{2}< x_2 < \dfrac{h_2}{2} + h_1, \end{aligned}$$
(60)
$$\begin{aligned}&p=P, \quad -\dfrac{h_2}{2}< x_2 < \dfrac{h_2}{2}, \end{aligned}$$
(61)
$$\begin{aligned}&p=P-\sigma _{13}^3, \quad -h_3 - \dfrac{h_2}{2}< x_2 < -\dfrac{h_2}{2}, \end{aligned}$$
(62)
having
$$\begin{aligned} \int _{h_2 / 2}^{h_2 / 2 + h_1} (P-\sigma _{13}^1) \mathrm{d}x_2 + \int _{-h_2 / 2}^{h_2 / 2} P \mathrm{d}x_2 + \int _{-h_3-h_2 / 2}^{-h_2 / 2 } (P-\sigma _{13}^3) \mathrm{d}x_2 =0, \end{aligned}$$
(63)
and
$$\begin{aligned} \int _{-h_2 / 2}^{h_2 / 2} x_2 P \mathrm{d}x_2 + \dfrac{h_2}{2} \int _{h_2 / 2}^{h_2 / 2+h_1}(P-\sigma _{13}^1)\mathrm{d}x_2 - \dfrac{h_2}{2} \int _{-h_2 / 2-h_3}^{-h_2 / 2} (P-\sigma _{13}^3) \mathrm{d}x_2=0, \end{aligned}$$
(64)
Finally, expressing \(\sigma _{13}^1\) and \(\sigma _{13}^3\) in (63) through N by formulae (41), first boundary condition becomes
$$\begin{aligned} N=\int _{-h_3 -h_2 / 2}^{h_2 / 2 + h_1} P \mathrm{d}x_2. \end{aligned}$$
(65)
Similarly, expressing second condition (64) through approximate formulae for N and G together with equation (39), we obtain
$$\begin{aligned}&\int _{-h_2 / 2}^{h_2 / 2} x_2 P \mathrm{d}x_2 + \dfrac{h_2}{2} \int _{h_2 / 2}^{h_2 / 2+h_1}Pdx_2 - \dfrac{h_2}{2} \int _{-h_2 / 2-h_3}^{-h_2 / 2} P \mathrm{d}x_2 \nonumber \\&\quad -\dfrac{h_2}{2} \left( \dfrac{h_1-h_3}{h_1+h_3} N + \dfrac{24 h_{1} h_{3}}{\mu h_2^2 (h_1+h_3)} G \right) =0. \end{aligned}$$
(66)
Finally, using (65) we arrive at the second boundary condition
$$\begin{aligned}&G= \dfrac{\mu h_2^2(h_1 + h_3)}{24 h_{1}h_{3}} \Bigg (\dfrac{2}{h_2} \int _{-h_2 / 2}^{h_2 / 2} x_2 P \mathrm{d}x_2 + \int _{h_2 / 2}^{h_2 / 2+h_1}Pdx_2 \nonumber \\&\quad - \int _{-h_2 / 2-h_3}^{-h_2 / 2} P \mathrm{d}x_2 - \dfrac{h_1-h_3}{h_1+h_3}\int _{-h_2 / 2 -h_3}^{h_2 / 2 + h_1} P \mathrm{d}x_2 \Bigg ). \end{aligned}$$
(67)
Derived boundary conditions (65) and (67) correspond to the first and second equations in (43), respectively. They can be also expressed through the average displacement U and the angle of rotation \(\phi \) using (44).