Skip to main content

Behavior of energies in strain gradient thermoelasticity of bodies with microtemperatures

Abstract

In this study, we approach the strain gradient thermoelasticity of bodies with microtemperatures. We define the internal energy corresponding to an arbitrary solution of the mixed problem with boundary and initial values, considered in the context of strain gradient thermoelasticity of bodies with microtemperatures. The Cesaro means of different parts of the internal energy are considered. In our main result, we prove the asymptotic equipartition of the strain and kinetic energies, in the case \(t\rightarrow \infty \).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids. Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  2. 2.

    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids. Struct. 4(1), 109–124 (1968)

    Article  Google Scholar 

  3. 3.

    Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39(10), 2731–2743 (2002)

    Article  Google Scholar 

  4. 4.

    Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    Levine, H.A.: An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space. J. Differ. Eqs. 24, 197–210 (1977)

    ADS  Article  Google Scholar 

  6. 6.

    Goldstein, J.A., Sandefur, J.T.: Asymptotic equipartition of energy for differential equations in Hilbert space. Trans. Am. Math. Soc. 219, 397–406 (1979)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gurtin, M.E.: The dynamics of solid–solid phase transitions. Arch. Ration. Mech. Anal. 4, 305–335 (1994)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Rionero, S., Chirita, S.: Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25, 935–946 (1987)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229–1240 (1994)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Day, W.A.: Means and autocorrections in elastodynamics. Arch. Ration. Mech. Anal. 73, 243–256 (1980)

    Article  Google Scholar 

  11. 11.

    Marin, M.: Cesaro means in thermoelasticity of dipolar bodies. Acta Mech. 122(1–4), 155–168 (1997)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Altenbach, H., Eremeyev, V:Shell-like Structures: Advanced Theories and Applications (CISM International Centre for Mechanical Sciences) Springer, Berlin (2016)

  13. 13.

    Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. C R Acad. Sci. Paris Serie II B 321(12), 375–480 (1995)

    MATH  Google Scholar 

  14. 14.

    Abbas, I., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E Low Dimens. Syst. Nanostruct. 87, 254–260 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    Abd-Elaziz, E.M., Marin, M., Othman, M.I.A.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry 11(3), 413 (2019)

    Article  Google Scholar 

  16. 16.

    Itu, C., Öchsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl. 233(8), 1585–1593 (2019)

    Google Scholar 

  17. 17.

    Riaz, A., Ellahi, R., Bhatti, M.M., Marin, M.: Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf. Res. 50(16), 1539–1560 (2019)

    Article  Google Scholar 

  18. 18.

    Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. St. Univ. Ovidius Constanta 22(2), 151–175 (2014)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Bhatti, M.M., Ellahi, R., Zeeshan, A., et al.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1950439 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. Real World Appl. 11(4), 2436–2447 (2010)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Katouzian, M., Vlase, S., Calin, M.R.: Experimental procedures to determine the viscoelastic parameters of laminated composites. J. Optoelectron. Adv. Mater. 13(9–10), 1185–1188 (2011)

    Google Scholar 

  22. 22.

    Stanciu, A., Teodorescu-Draghicescu, H., Vlase, S., et al.: Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron. Adv. Mater. 6(3–4), 495–497 (2012)

    Google Scholar 

  23. 23.

    Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Continuum Mech. Thermodyn. 32, 269–278 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Ahmadi, G., Firoozbaksh, K.: First strain-gradient theory of thermoelasticity. Int. J. Solids. Struct. 11, 339–345 (1975)

    Article  Google Scholar 

  25. 25.

    Aouadi, M., El Dhaba, A.R., Ghaleb, A.F.: Stability aspects in strain gradient theory of thermoelasticity with mass diffusion. J. Appl. Math. Mech. (ZAMM) 98(10), 1794–1812 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)

    Article  Google Scholar 

  27. 27.

    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  28. 28.

    Hlavacek, I., Necas, J.: On inequalities of Korn’s type. Arch. Ration. Mech. Anal. 36, 305–334 (1980)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Marcus Aßmus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. & Vlase, S. Behavior of energies in strain gradient thermoelasticity of bodies with microtemperatures. Continuum Mech. Thermodyn. 33, 877–891 (2021). https://doi.org/10.1007/s00161-020-00914-z

Download citation

Keywords

  • Strain gradient thermoelasticity
  • Microtemperature
  • Cesaro means
  • Equipartition
  • Strain energy
  • Kinetic energy