Skip to main content

Gibbs–Appell method-based governing equations for one-dimensional finite elements used in flexible multibody systems

Abstract

Lagrange’s equations represent the common approach in finite element analysis of an elastic multibody system. The most important step in this case is to write the governing equations. The work develops an alternative method to obtain these equations, using so-called Gibbs–Appell formalism. The advantage of this method is the decrease in the number of calculations to be made. The acceleration energy will be calculated first for a one-dimensional finite element, and then Gibbs–Appell equations are applied in the classical form. The number of differentiations required, compared to the method of Lagrange’s equations, decreases significantly, with effects on the computational time required to solve such a problem. We can assume that, due to its simplicity, this method will determine the interest of researchers in the case of large industrial applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    ADS  Article  Google Scholar 

  2. 2.

    Erdman, A.G., Sandor, G.N., Oakberg, A.: A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Manuf. Sci. Eng. Trans. ASME 94(4), 1193–1205 (1972)

    Article  Google Scholar 

  3. 3.

    Sung, C.K.: An experimental study on the nonlinear elastic dynamic response of linkage mechanism. Mech. Mach. Theory 21, 121–133 (1986)

    Article  Google Scholar 

  4. 4.

    Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)

    Article  Google Scholar 

  5. 5.

    Fanghella, P., Galletti, C., Torre, G.: An explicit independent-coordinate formulation for the equations of motion of flexible multibody systems. Mech. Mach. Theory 38, 417–437 (2003)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gerstmayr, J., Schöberl, J.: A 3d finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hou, W., Zhang, X.: Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 319(1–2), 570–592 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    Ibrahimbegović, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Khang, N.V.: Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems. Mech. Res. Commun. 38(4), 294–299 (2011)

    Article  Google Scholar 

  10. 10.

    Khulief, Y.A.: On the finite element dynamic analysis of flexible mechanisms. Comput. Method Appl. Mech. Eng. 97(1), 23–32 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Itu, C., Oechsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 233(8), 1585–1593 (2019)

    Google Scholar 

  12. 12.

    Scutaru, M.L., et al.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020(1), 1–14 (2020)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Appell, P.: Traité de Mécanique Rationnelle: Dynamique Des Systèmes. Wentworth Press, Sydney (2018)

    MATH  Google Scholar 

  14. 14.

    Emam, S.A.: Generalized Lagrange’s equations for systems with general constraints and distributed parameters. Multibody Syst. Dyn. 49(1), 95–117 (2020)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Pennestri’, E., de Falco, D., Vita, L.: An investigation of the inuence of pseudoinverse matrix calculations on multibody dynamics by means of the Udwadia-Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Article  Google Scholar 

  16. 16.

    Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)

    Article  Google Scholar 

  17. 17.

    Shi, Y.M., Li, Z.F., Hua, H.X., Fu, Z.F., Liu, T.X.: The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib. 245(5), 785–800 (2001)

    ADS  Article  Google Scholar 

  18. 18.

    Simeon, B.: On Lagrange multipliers in flexible multibody dynamic. Comput. Method Appl. Mech. Eng. 195(50–51), 6993–7005 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Vlase, S.: Dynamical response of a multibody system with flexible elements with a general three dimensional motion. Rom. J. Phys. 57(3–4), 676–693 (2012)

    Google Scholar 

  20. 20.

    Negrean, I., Crisan, A.V., Vlase, S.: A new approach in analytical dynamics of mechanical systems. Symmetry 2020(12), 1–24 (2020)

    Google Scholar 

  21. 21.

    Negrean, I.: Advanced notions in analytical dynamics of systems. Acta Tech. Napoc. Appl. Math. Mech. Eng. 60(4), 491–502 (2017)

    Google Scholar 

  22. 22.

    Vlase, S., Negrean, I., Marin, M., Nastac, S.: Kane’s method-based simulation and modeling robots with elastic elements, using finite element method. Mathematics 2020(8), 1–23 (2020)

    Google Scholar 

  23. 23.

    Dowell, E.: Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints. Nonlinear Dyn. 88(2), 1093–1097 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Sklar, L.: Hamilton’s Equations. Philosophy and the Foundations of Dynamics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  25. 25.

    Tong, M.M.: Flexible multibody dynamics formulation by Hamilton’s equations. Int. Mech. Eng. Congr. Expo. 2010(8), 725–734 (2012)

    Google Scholar 

  26. 26.

    Negrean, I., Crisan, A.-V.: Synthesis on the acceleration energies in the advanced mechanics of the multibody systems. Symmetry 2019(11), 1–20 (2019)

    Google Scholar 

  27. 27.

    Vlase, S., Negrean, I., Marin, M., Scutaru, M.L.: Energy of accelerations used to obtain the motion equations of a three- dimensional finite element. Symmetry-Basel 2020(12), 1–13 (2020)

    Google Scholar 

  28. 28.

    Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method, 2nd edn. Springer, Singapore (2020)

    Book  Google Scholar 

  29. 29.

    Vlase, S., Marin, M., Öchsner, A., Scutaru, M.L.: Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Therm. 31(3), 715–724 (2019)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Riaz, A., Ellahi, R., Bhatti, M.M., Marin, M.: Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf. Res. 50(16), 1539–1560 (2019)

    Article  Google Scholar 

  31. 31.

    Bhatti, M.M., Ellahi, R., Zeeshan, A., et al.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1–16 (2019). Art. No. 1950439

    MathSciNet  Article  Google Scholar 

  32. 32.

    Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41(4), 637–54 (2020)

    Article  Google Scholar 

  33. 33.

    Abbas, I., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E Low Dimens. Syst. Nanostruct. 87, 254–260 (2017)

    ADS  Article  Google Scholar 

  34. 34.

    Abd-Elaziz, E.M., Marin, M., Othman, M.I.A.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry 11(3), 413 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Appendix

Appendix

The coefficients \(r_{ij}\) define the position of the unit vector of the local coordinate system Oxyz. The orthogonality condition leads to:

$$\begin{aligned} r_{ij} r_{kj} =r_{jk} r_{ji} =\bar{{\delta }}_{ij}, \quad i,j,k=1,2,3 \end{aligned}$$
(A.1)

where \(\bar{{\delta }}_{ij} \) is the Kronecker delta. If we differentiate this equation, it will result:

$$\begin{aligned} \dot{{r}}_{ij} r_{kj} +r_{ij} \dot{{r}}_{kj} =0,\quad i,j,k=1,2,3. \end{aligned}$$
(A.2)

Denote:

$$\begin{aligned} \omega _{ik} =\dot{{r}}_{ij} r_{kj} . \end{aligned}$$
(A.3)

The relation (20) becomes:

$$\begin{aligned} \omega _{ik} +\omega _{ki} =0. \end{aligned}$$
(A.4)

The skew-symmetric tensor \(\omega _{ik} \) is the operator angular velocity (with its components express in the global reference system). To this corresponds the angular velocity vector defined by:

$$\begin{aligned} \omega _{1} =\omega _{32} =-\omega _{23};\quad \omega _{2} =\omega _{13} =-\omega _{31};\quad \omega _{3} =\omega _{21} =-\omega _{12} . \end{aligned}$$
(A.5)

The angular acceleration skew symmetric operator is:

$$\begin{aligned} \varepsilon _{ik} =\dot{{\omega }}_{ik} =\ddot{{r}}_{ij} r_{kj} +\dot{{r}}_{ij} \dot{{r}}_{kj}. \end{aligned}$$
(A.6)

The angular acceleration vector defined by:

$$\begin{aligned} \varepsilon _{1} =\varepsilon _{32} =-\varepsilon _{23};\quad \varepsilon _{2} =\varepsilon _{13} =-\varepsilon _{31};\quad \varepsilon _{3} =\varepsilon _{21} =-\varepsilon _{12}. \end{aligned}$$
(A.7)

We shall have:

$$\begin{aligned} \varepsilon _{ik} =\dot{{\omega }}_{ik} =\ddot{{r}}_{ij} r_{kj} +\dot{{r}}_{ij} \dot{{r}}_{kj} =\ddot{{r}}_{ij} r_{kj} +\dot{{r}}_{ij} r_{jl} r_{ml} \dot{{r}}_{km} =\ddot{{r}}_{ij} r_{kj} -\omega _{il} \omega _{lk}, \end{aligned}$$
(A.8)

from where:

$$\begin{aligned} \ddot{{r}}_{ij} r_{kj} =\varepsilon _{ik} +\omega _{il} \omega _{lk}, \end{aligned}$$
(A.9)

result used in the following calculus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlase, S., Marin, M. & Öchsner, A. Gibbs–Appell method-based governing equations for one-dimensional finite elements used in flexible multibody systems. Continuum Mech. Thermodyn. 33, 357–368 (2021). https://doi.org/10.1007/s00161-020-00907-y

Download citation

Keywords

  • Multibody system
  • Gibbs–Appell’s equations
  • Finite element method
  • Three-dimensional motion