Skip to main content

Phenomenon of skin effect in metals due to hydrogen absorption

Abstract

Experimental studies of the distribution of hydrogen in metal samples after a standardized saturation procedure in a neutral solution are described. It is shown that the hydrogen concentrates in a thin surface layer which plays the role of a shield for the further propagation of hydrogen. We refer to this phenomenon as a skin effect in the hydrogen saturation since the internal regions of the metal are not saturated by hydrogen. A review of similar experimental results for other standardized methods for saturation of metals with hydrogen (cathodic polarization, saturation in gaseous hydrogen) is provided, and the universal nature of the skin effect for metals is shown. The analysis of mechanisms of the skin effect is carried out by methods of continuum mechanics based on a bi-continual model of a solid. The problem of saturating a metal sample with hydrogen without external load is posed. It is shown that the model taking into account the mutual influence of hydrogen and mechanical stresses allows one to obtain solutions describing the highly non-uniform distribution of hydrogen at standardized saturation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique. ISO 17081:2014 International Organization for Standardization (2014). https://www.iso.org/standard/64514.html

  2. 2.

    Steel—measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels. ISO 16573:2015 International Organization for Standardization (2015). https://www.iso.org/standard/57128.html

  3. 3.

    Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. TM0284-2106-SG ANSI/NACE Standard, NACE International, Houston, TX (2016). https://store.nace.org/ansi-nace-tm0284-2016

  4. 4.

    Transportable gas cylinders—compatibility of cylinder and valve materials with gas contents—part 4: Test methods for selecting metallic materials resistant to hydrogen embrittlement. ISO 11114-4:2017 International Organization for Standardization (2017). https://www.iso.org/standard/64587.html

  5. 5.

    Welding and allied processes—determination of hydrogen content in arc weld metal. ISO3690:2018 IIW International Institute of Welding (2018). https://www.iso.org/standard/72150.html

  6. 6.

    Akiyama, E., Li, S.: Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study. Corros. Rev. 34(1–2), 103–112 (2016). https://doi.org/10.1515/corrrev-2015-0049

    Article  Google Scholar 

  7. 7.

    Andrew, J.H.: The embrittling of iron by caustic soda. Trans. Faraday Soc. 9, 316–329 (1914). https://doi.org/10.1039/TF9140900316

    Article  Google Scholar 

  8. 8.

    Andronov, D., Arseniev, D., Polyanskiy, A., Polyanskiy, V., Yakovlev, Y.: Application of multichannel diffusion model to analysis of hydrogen measurements in solid. Int. J. Hydrog. Energy 42(1), 699–710 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.126

    Article  Google Scholar 

  9. 9.

    Belyaev, A., Polyanskiy, A., Polyanskiy, V., Sommitsch, C., Yakovlev, Y.A.: Multichannel diffusion vs TDS model on example of energy spectra of bound hydrogen in 34 Cr Ni Mo6 steel after a typical heat treatment. Int. J. Hydrog. Energy 41(20), 8627–8634 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.198

    Article  Google Scholar 

  10. 10.

    Belyaev, A., Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Y.A.: An Approach to Modeling Structural Materials with Low Hydrogen Concentration, pp. 63–87. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-11665-1_4

    Chapter  Google Scholar 

  11. 11.

    Belyaev, A.K., Kudinova, N.R., Polyanskiy, V.A., Yakovlev, Y.A.: The description of deformation and destruction of materials containing hydrogen by means of rheological model. St. Petersb. Polytech. Univ. J. Phys. Math. 1(3), 305–314 (2015). https://doi.org/10.1016/j.spjpm.2015.12.002

    Article  Google Scholar 

  12. 12.

    Belyaev, A.K., Polyanskiy, V.A., Porubov, A.V.: Nonlinear dynamics of hydrogen concentration in high-strength and high-entropy alloys. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0734-7

    Article  Google Scholar 

  13. 13.

    Bhadeshia, H.K.D.H.: Prevention of hydrogen embrittlement in steels. ISIJ Int. 56(1), 24–36 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430

    Article  Google Scholar 

  14. 14.

    Birnbaum, H., Sofronis, P.: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176(1–2), 191–202 (1994). https://doi.org/10.1016/0921-5093(94)90975-X

    Article  Google Scholar 

  15. 15.

    Brass, A., Chene, J.: Influence of deformation on the hydrogen behavior in iron and nickel base alloys: a review of experimental data. Mater. Sci. Eng., A 242(1), 210–221 (1998). https://doi.org/10.1016/S0921-5093(97)00523-6

    Article  Google Scholar 

  16. 16.

    Capelle, J., Gilgert, J., Dmytrakh, I., Pluvinage, G.: Sensitivity of pipelines with steel api X52 to hydrogen embrittlement. Int. J. Hydrog. Energy 33(24), 7630–7641 (2008). https://doi.org/10.1016/j.ijhydene.2008.09.020

    Article  Google Scholar 

  17. 17.

    Chan, S.L.I.: Hydrogen trapping ability of steels with different microstructures. J. Chin. Inst. Eng. 22(1), 43–53 (1999). https://doi.org/10.1080/02533839.1999.9670440

    ADS  Article  Google Scholar 

  18. 18.

    Chan, S.L.I., Charles, J.A.: Effect of carbon content on hydrogen occlusivity and embrittlement of ferrite–pearlite steels. Mater. Sci. Technol. 2(9), 956–962 (1986). https://doi.org/10.1179/mst.1986.2.9.956

    Article  Google Scholar 

  19. 19.

    Chen, Y., Zheng, S., Zhou, J., Wang, P., Chen, L., Qi, Y.: Influence of H\(_2\)S interaction with prestrain on the mechanical properties of high-strength X80 steel. Int. J. Hydrog. Energy 41(24), 10412–10420 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.144

    Article  Google Scholar 

  20. 20.

    Cheng, Y.: Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines. Electrochim. Acta 52(7), 2661–2667 (2007). https://doi.org/10.1016/j.electacta.2006.09.024

    Article  Google Scholar 

  21. 21.

    Choo, W.Y., Lee, J.Y.: Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 13(1), 135–140 (1982). https://doi.org/10.1007/BF02642424

    Article  Google Scholar 

  22. 22.

    Choo, W.Y., Lee, J.Y., Cho, C.G., Hwang, S.H.: Hydrogen solubility in pure iron and effects of alloying elements on the solubility in the temperature range 20 to 500\(^\circ \) C. J. Mater. Sci. 16(5), 1285–1292 (1981). https://doi.org/10.1007/BF01033843

    ADS  Article  Google Scholar 

  23. 23.

    Delafosse, D., Magnin, T.: Interfaces in stress corrosion cracking: a case study in duplex stainless steels. In: Solid State Phenomena, vol. 59, pp. 221–250. Trans Tech Publ (1998)

  24. 24.

    Delafosse, D., Magnin, T.: Hydrogen induced plasticity in stress corrosion cracking of engineering systems. Eng. Fract. Mech. 68(6), 693–729 (2001). https://doi.org/10.1016/S0013-7944(00)00121-1

    Article  Google Scholar 

  25. 25.

    Depover, T., Wallaert, E., Verbeken, K.: On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe- C alloys. Mater. Sci. Eng., A 664, 195–205 (2016). https://doi.org/10.1016/j.msea.2016.03.107

    Article  Google Scholar 

  26. 26.

    Dmytrakh, I., Leshchak, R., Syrotyuk, A., Barna, R.: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel. Int. J. Hydrogen Energy 42(9), 6401–6408 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.193

    Article  Google Scholar 

  27. 27.

    Dunne, D.P., Hejazi, D., Saleh, A.A., Haq, A.J., Calka, A., Pereloma, E.V.: Investigation of the effect of electrolytic hydrogen charging of X70 steel: I the effect of microstructure on hydrogen-induced cold cracking and blistering. Int. J. Hydrogen Energy 41(28), 12411–12423 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.114

    Article  Google Scholar 

  28. 28.

    Embid, P., Baer, M.: Mathematical analysis of a two-phase continuum mixture theory. Continuum Mech. Thermodyn. 4(4), 279–312 (1992). https://doi.org/10.1007/BF01129333

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Farrell, K.: Cathodic hydrogen absorption and severe embrittlement in a high strength steel. Corrosion 26(3), 105–110 (1970). https://doi.org/10.5006/0010-9312-26.3.105

    Article  Google Scholar 

  30. 30.

    Fernandes, P.J.L., Jones, D.R.H.: Mechanisms of liquid metal induced embrittlement. Int. Mater. Rev. 42(6), 251–261 (1997). https://doi.org/10.1179/imr.1997.42.6.251

    Article  Google Scholar 

  31. 31.

    Gangloff, R.P.: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments, Woodhead Publishing Series in Metals and Surface Engineering 52, vol. 2. Woodhead Publishing, Sawston (2012)

    Book  Google Scholar 

  32. 32.

    Gorsky, W.: Theorie der elastischen nachwirkung in ungeordneten mischkristallen (elastische nachwirkung zweiter art.). Physikalische Zeitschrift der Sowjetunion 8, 457–471 (1935)

    Google Scholar 

  33. 33.

    Gorsky, W.: Theorie der elastischen nachwirkung in ungeordneten mischkristallen von cuau. Physikalische Zeitschrift der Sowjetunion 8, 443–456 (1935)

    Google Scholar 

  34. 34.

    Hadam, U., Zakroczymski, T.: Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques. Int. J. Hydrogen Energy 34(5), 2449–2459 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.088

    Article  Google Scholar 

  35. 35.

    Hadfield, R.: The occlusion of gases by metals. a general discussion. introductory address. Trans. Faraday Soc. 14, 173–191 (1919). https://doi.org/10.1039/TF9191400173

    Article  Google Scholar 

  36. 36.

    Hassel, A., Merzlikin, S., Mingers, A., Georges, C., Flock, J., Bergers, K., Tomandl, A., Muhr, A., Zwettler, F.: Methodology of Hydrogen Measurements in Coated Steels. Publications Office of the European Union, Luxembourg (2013). https://doi.org/10.2777/10253

  37. 37.

    Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11(6), 861–890 (1980). https://doi.org/10.1007/BF02654700

    Article  Google Scholar 

  38. 38.

    Hu, Z., Fukuyama, S., Yokogawa, K., Okamoto, S.: Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Modell. Simul. Mater. Sci. Eng. 7(4), 541 (1999)

    ADS  Article  Google Scholar 

  39. 39.

    Jenkins, N., Hart, P., Parker, D.: An evaluation of rapid methods for diffusible weld hydrogen. Weld. J.-Incl. Wel. Res.Suppl. 76(1), 1–6 (1997)

    Google Scholar 

  40. 40.

    Johnson, W.H.: On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. R. Soc. Lond. 23(156–163), 168–179 (1874)

    Google Scholar 

  41. 41.

    Johnson, W.H.: On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Nature 11(281), 393 (1875). https://doi.org/10.1038/011393a0

    ADS  Article  Google Scholar 

  42. 42.

    Kim, C.D., Loginow, A.W.: Techniques for investigating hydrogen-induced cracking of steels with high yield strength. Corosion 24(10), 313–318 (1968). https://doi.org/10.5006/0010-9312-24.10.313

    Article  Google Scholar 

  43. 43.

    Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045

    Article  Google Scholar 

  44. 44.

    Kolman, D.: A review of recent advances in the understanding of liquid metal embrittlement. Corrosion 75(1), 42–57 (2018). https://doi.org/10.5006/2904

    Article  Google Scholar 

  45. 45.

    Konar, J., Banerjee, N.: Vacuum heating hydrogen determination in aluminium and aluminium alloys. NML Tech. J. 16(1–2), 18–19 (1974)

    Google Scholar 

  46. 46.

    Konopel’ko, L.A., Polyanskii, A.M., Polyanskii, V.A., Yakovlev, Y.A.: New metrological support for measurements of the concentration of hydrogen in solid samples. Meas. Tech. 60(12), 1222–1227 (2018). https://doi.org/10.1007/s11018-018-1343-3

    Article  Google Scholar 

  47. 47.

    Kudinova, N.R., Polyanskiy, V.A., Polyanskiy, A.M., Yakovlev, Y.A.: Contribution of surface tension energy during plastic deformation of nanomaterials. Dokl. Phys. 61(10), 514–516 (2016). https://doi.org/10.1134/S1028335816100104

    ADS  Article  Google Scholar 

  48. 48.

    Kuduzovic, A., Poletti, M., Sommitsch, C., Domankova, M., Mitsche, S., Kienreich, R.: Investigations into the delayed fracture susceptibility of 34crnimo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng., A 590, 66–73 (2014). https://doi.org/10.1016/j.msea.2013.10.019

    Article  Google Scholar 

  49. 49.

    Leeuwen, H.V.: The kinetics of hydrogen embrittlement: A quantitative diffusion model. Eng. Fract. Mech. 6(1), 141–161 (1974). https://doi.org/10.1016/0013-7944(74)90053-8

    Article  Google Scholar 

  50. 50.

    Lexcellent, C., Gay, G., Chapelle, D.: Thermomechanics of a metal hydride-based hydrogen tank. Contin. Mech. Thermodyn. 27(3), 379–397 (2015). https://doi.org/10.1007/s00161-014-0356-7

    ADS  Article  Google Scholar 

  51. 51.

    Li, J., Oriani, R., Darken, L.: The thermodynamics of stressed solids. Zeitschrift für Physikalische Chemie 49(3–5), 271–290 (1966). https://doi.org/10.1524/zpch.1966.49.3_5.271

    Article  Google Scholar 

  52. 52.

    Lunarska, E.: Changes in the strain hardening rate of iron and steel during absorption and desorption of hydrogen under cathodic charging and discharging conditions. Scr. Metall. 15(10), 1077–1082 (1981). https://doi.org/10.1016/0036-9748(81)90161-7

    Article  Google Scholar 

  53. 53.

    Lunarska, E., Flis, J.: Effect of hydrogen charging–discharging on the stress-strain relationship for nickel. Scr. Metall. 18(9), 889–892 (1984). https://doi.org/10.1016/0036-9748(84)90255-2

    Article  Google Scholar 

  54. 54.

    Lynch, S.: A fractographic study of gaseous hydrogen embrittlement and liquid-metal embrittlement in a tempered-martensitic steel. In: M. Ashby, J. Hirth (eds.) Perspectives in Hydrogen in Metals, pp. 739–750. Pergamon, Oxford (1986). https://doi.org/10.1016/B978-0-08-034813-1.50103-0

    Chapter  Google Scholar 

  55. 55.

    Martinsson, Å., Sandström, R.: Hydrogen depth profile in phosphorus-doped, oxygen - free copper after cathodic charging. J. Mater. Sci. 47(19), 6768–6776 (2012). https://doi.org/10.1007/s10853-012-6592-y

    ADS  Article  Google Scholar 

  56. 56.

    Mine, Y., Koga, K., Takashima, K., Horita, Z.: Mechanical characterisation of microstructural evolution in 304 stainless steel subjected to high-pressure torsion with and without hydrogen pre-charging. Mater. Sci. Eng., A 661, 87–95 (2016). https://doi.org/10.1016/j.msea.2016.03.018

    Article  Google Scholar 

  57. 57.

    Momotani, Y., Shibata, A., Terada, D., Tsuji, N.: Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel. Int. J. Hydrogen Energy 42(5), 3371–3379 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.188

    Article  Google Scholar 

  58. 58.

    Newman, J., Shreir, L.: The effect of temperature upon the solubility and diffusion coefficient of cathodic H2 in steel. Corros. Sci. 11(1), 25–33 (1971). https://doi.org/10.1016/S0010-938X(71)80071-9

    Article  Google Scholar 

  59. 59.

    Nicholas, M.G., Old, C.F.: Liquid metal embrittlement. J. Mater. Sci. 14(1), 1–18 (1979). https://doi.org/10.1007/BF01028323

    ADS  Article  Google Scholar 

  60. 60.

    Niu, L., Cheng, Y.: Corrosion behavior of X-70 pipe steel in near-neutral p H solution. Appl. Surf. Sci. 253(21), 8626–8631 (2007). https://doi.org/10.1016/j.apsusc.2007.04.066

    ADS  Article  Google Scholar 

  61. 61.

    Omura, T., Nakamura, J., Hirata, H., Jotoku, K., Ueyama, M., Osuki, T., Terunuma, M.: Effect of surface hydrogen concentration on hydrogen embrittlement properties of stainless steels and ni based alloys. ISIJ Int. 56(3), 405–412 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-268

    Article  Google Scholar 

  62. 62.

    Oriani, R.: The diffusion and trapping of hydrogen in steel. Acta Metall. 18(1), 147–157 (1970). https://doi.org/10.1016/0001-6160(70)90078-7

    Article  Google Scholar 

  63. 63.

    Pearson, W.: Chapter V - miscellaneous aspects of lattice–spacing variation. In: W. Pearson (ed.) A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4, pp. 68 – 75. Pergamon (1958). https://doi.org/10.1016/B978-1-4832-1318-7.50009-7

    Chapter  Google Scholar 

  64. 64.

    Petushkov, E., Tserfas, A., Maksumov, T.: Determination of hydrogen in molybdenum by a diffusion–manometric method. In: U. Arifov (ed.) Secondary Emission and Structural Properties of Solids, pp. 107–109. Springer US (1971). https://doi.org/10.1007/978-1-4684-7212-7_27

    Chapter  Google Scholar 

  65. 65.

    Polyanskiy, A., Polyanskiy, V., Yakovlev, Y.A.: Experimental determination of parameters of multichannel hydrogen diffusion in solid probe. Int. J. Hydrogen Energy 39(30), 17381–17390 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.080

    Article  Google Scholar 

  66. 66.

    Pressouyre, G.: Trap theory of hydrogen embrittlement. Acta Metall. 28(7), 895–911 (1980). https://doi.org/10.1016/0001-6160(80)90106-6

    Article  Google Scholar 

  67. 67.

    Ramunni, V., Coelho, T.D.P., de Miranda, P.: Interaction of hydrogen with the microstructure of low-carbon steel. Mater. Sci. Eng., A 435–436, 504–514 (2006). https://doi.org/10.1016/j.msea.2006.07.089

    Article  Google Scholar 

  68. 68.

    Robertson, I.: The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68(6), 671–692 (2001). https://doi.org/10.1016/S0013-7944(01)00011-X

    Article  Google Scholar 

  69. 69.

    Ryu, J.H., Chun, Y.S., Lee, C.S., Bhadeshia, H., Suh, D.W.: Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Mater. 60(10), 4085–4092 (2012). https://doi.org/10.1016/j.actamat.2012.04.010

    Article  Google Scholar 

  70. 70.

    Sanchez, J., Lee, S., Martin-Rengel, M., Fullea, J., Andrade, C., Ruiz-Herväs, J.: Measurement of hydrogen and embrittlement of high strength steels. Eng. Fail. Anal. 59, 467–477 (2016). https://doi.org/10.1016/j.engfailanal.2015.11.001

    Article  Google Scholar 

  71. 71.

    Sayi, Y., Ramakumar, K., Prasad, R., Yadav, C., Shankaran, P., Chhapru, G., Jain, H.: Determination of H\(_2\) and D\(_2\) content in metals and alloys using hot vacuum extraction. J. Radioanal. Nucl. Chem. 230(1–2), 5–9 (1998). https://doi.org/10.1007/BF02387438

    Article  Google Scholar 

  72. 72.

    Schaller, R., Scully, J.: Spatial determination of diffusible hydrogen concentrations proximate to pits in a Fe- Cr- Ni- Mo steel using the scanning kelvin probe. Electrochem. Commun. 63, 5–9 (2016). https://doi.org/10.1016/j.elecom.2015.12.002

    Article  Google Scholar 

  73. 73.

    Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech. A. Solids 20(6), 857–872 (2001). https://doi.org/10.1016/S0997-7538(01)01179-2

    Article  MATH  Google Scholar 

  74. 74.

    Song, J., Curtin, W.: A nanoscale mechanism of hydrogen embrittlement in metals. Acta Mater. 59(4), 1557–1569 (2011). https://doi.org/10.1016/j.actamat.2010.11.019

    Article  Google Scholar 

  75. 75.

    Varias, A., Massih, A.: Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients. J. Nucl. Mater. 279(2–3), 273–285 (2000). https://doi.org/10.1016/S0022-3115(99)00286-X

    ADS  Article  Google Scholar 

  76. 76.

    Varias, A., Massih, A.: Hydride-induced embrittlement and fracture in metals—effect of stress and temperature distribution. J. Mech. Phys. Solids 50(7), 1469–1510 (2002). https://doi.org/10.1016/S0022-5096(01)00117-X

    ADS  Article  MATH  Google Scholar 

  77. 77.

    Williams, D.P., Nelson, H.G.: Embrittlement of 4130 steel by low-pressure gaseous hydrogen. Metall. Trans. 1(1), 63–68 (1970). https://doi.org/10.1007/BF02819243

    Article  Google Scholar 

  78. 78.

    Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A.: Charging, degassing and distribution of hydrogen in cast iron. Swerea KIMAB pp. 1–41 (2015). http://www.skb.com/publication/2480147/R-13-45.pdf

  79. 79.

    Wu, T.I., Wu, J.C.: Effects of cathodic charging and subsequent solution treating parameters on the hydrogen redistribution and surface hardening of Ti–6 Al–4 V alloy. J. Alloy. Compd. 466(1), 153–159 (2008). https://doi.org/10.1016/j.jallcom.2007.11.045

    Article  Google Scholar 

  80. 80.

    Yagodzinskyy, Y., Todoshchenko, O., Papula, S., Hänninen, H.: Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res. Int. 82(1), 20–25 (2011). https://doi.org/10.1002/srin.201000227

    Article  Google Scholar 

  81. 81.

    Yamabe, J., Awane, T., Matsuoka, S.: Elucidating the hydrogen-entry-obstruction mechanism of a newly developed aluminum-based coating in high-pressure gaseous hydrogen. Int. J. Hydrogen Energy 40(32), 10329–10339 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.023

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed in the Institute for Problems in Mechanical Engineering and is supported solely by the Russian Science Foundation (Grant No. 18-19-00160).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Polyanskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polyanskiy, V.A., Belyaev, A.K., Alekseeva, E.L. et al. Phenomenon of skin effect in metals due to hydrogen absorption. Continuum Mech. Thermodyn. 31, 1961–1975 (2019). https://doi.org/10.1007/s00161-019-00839-2

Download citation

Keywords

  • Hydrogen-induced cracking
  • Bi-continual model
  • Dissolved hydrogen
  • Mechanical stresses
  • Hydrogen diffusion