The application of numerical and analytical approaches for the determination of thermophysical properties of Al–Si–Cu–Mg alloys

Abstract

Thermophysical properties are very important to simulate the behavior of materials. Computer simulations are low cost as compared to what is needed for physical simulations, as far as it normally requires only a computer, a model and a computer language. However, the accuracy of numerical simulations depends on the quality of the thermophysical properties used in the prediction of physical phenomena, such as fluid flow, heat transfer, alloy solidification and solid-state phase transformations. The thermophysical properties for pure metals are widely available in the literature; nevertheless, for multicomponent metallic alloys, this is not the case. In this paper, a novel definition of non-equilibrium Gibbs–Thomson coefficient is presented, and thermodynamics calculations are carried out based on analytical and numerical approaches for the prediction of: liquidus and eutectic temperatures, equilibrium and non-equilibrium latent heats of fusion, solid–liquid surface tensions, solid and liquid densities, equilibrium and non-equilibrium Gibbs–Thomson coefficients, viscosity and surface tension as a function of temperature of quaternary Al–Si–Cu–Mg alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Schumacher, P., Pogatscher, S., Starink, M.J., Schick, C., Mohles, V., Milkereit, B.: Quench-induced precipitates in Al–Si alloys: calorimetric determination of solute content and characterisation of microstructure. Thermochim. Acta 602, 63–73 (2015)

    Article  Google Scholar 

  2. 2.

    Blumm, J., Henderson, J.: Thermophysical properties of A201, A319, and A356 aluminium casting alloys. High Temp. High Press. 32, 109–113 (2000)

    Article  Google Scholar 

  3. 3.

    Brooks, R.F., Day, A.P., Mills, K.C., Quested, P.N.: Physical property measurements for the mathematical modeling of fluid flow in solidification processes. Int. J. Thermophys. 18, 471–480 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    Egry, I., Ricci, E., Novakovic, R., Ozawa, S.: Surface tension of liquid metals and alloys—recent developments. Adv. Colloid Interface 159, 198–212 (2010)

    Article  Google Scholar 

  5. 5.

    Padday, J.F.: Surface and Colloid Science. Wiley, New York (1969)

    Google Scholar 

  6. 6.

    Simon, M.: Recherches sur la capillarite. Ann. Chim. Phys. 32, 5–29 (1851)

    Google Scholar 

  7. 7.

    Wilhelmy, L.: Leber die Abhangigkeit der Capillaritats-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Korpers. Ann. Phys. 119, 177–217 (1863)

    Article  Google Scholar 

  8. 8.

    Frazer, M.E., Lu, W.K., Hamielec, A.E., Murarka, R.: Surface tension measurements on pure liquid iron and nickel by an oscillating drop technique. Metall. Trans. 2, 817–823 (1971)

    Article  Google Scholar 

  9. 9.

    Gancarz, T., Gasior, W.: Density, surface tension and viscosity of liquid Pb–Sb alloys. J. Chem. Eng. Data. 63, 1471–1479 (2018)

    Article  Google Scholar 

  10. 10.

    Gancarz, T., Moser, Z., Gasior, W., Pstrus, J., Henein, H.: A comparison of surface tension, viscosity and density of Sn and Sn–Ag alloys using different measurement techniques. Int. J. Thermophys. 417, 1210–1233 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Gancarz, T., Gasior, W., Henein, H.: The discharge crucible method for making measurements of the physical properties of melts: an overview. Int. J. Thermophys. 35, 1725–1748 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    Gancarz, T.: Physicochemical properties of Sb–Sn–Zn alloys. J. Electron. Mater. 43, 4374–4385 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    Ferreira, I. L., Castro, J. A., Garcia, A.: Dependence of surface tension and viscosity on temperature in multicomponent alloys. In: Wettability and Interfacial Phenomena—Implications for Material Processing. 1ed. London: IntechOpen. https://doi.org/10.5772/intechopen.82307 (2019)

  14. 14.

    Ferreira, D.J.S., Bezerra, B.N., Collyer, M.N., Garcia, A., Ferreira, I.L.: The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys. Contin. Mech. Thermodyn. 30, 1145–1154 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Nascimento, F.C., Paresque, M.C.C., Castro, J.A., Jácome, P.A.D., Garcia, A., Ferreira, I.L.: Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys. Thermochim. Acta. 619, 1–7 (2015)

    Article  Google Scholar 

  16. 16.

    Butler, J.A.V.: The thermodynamics of the surfaces of solutions. Proc. R. Soc. A 135, 348–375 (1932)

    ADS  MATH  Google Scholar 

  17. 17.

    Picha, R., Vrestal, J., Kroupa, A.: Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28, 141–146 (2004)

    Article  Google Scholar 

  18. 18.

    Jácome, P.A.D., Landim, M.C., Garcia, A., Furtado, A.F., Ferreira, I.L.: The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys. Thermochim. Acta 523, 142–149 (2011)

    Article  Google Scholar 

  19. 19.

    Kaptay, G.: A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data. In: Proceedings of microCAD 2003 Conference. Section Metallurgy, University of Miskolc, pp. 23–28 (2003)

  20. 20.

    Ferreira, I.L., Castro, J.A., Garcia, A.: On the prediction of temperature-dependent viscosity of multicomponent liquid alloys. Contin. Mech. Thermodyn. (2019). https://doi.org/10.1007/s00161-019-00753-7

    Article  Google Scholar 

  21. 21.

    Seetharaman, S., Du, S.C.: Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. Mater. Trans. 25B, 589–595 (1994)

    Article  Google Scholar 

  22. 22.

    Egry, I.: On the relation between surface tension and viscosity for liquid metals. Scripta Metall. Mater. 28, 1273–1276 (1993)

    Article  Google Scholar 

  23. 23.

    Voller, V.R.: On the General back-diffusion parameter. J. Cryst. Growth 226, 562–568 (2001)

    ADS  Article  Google Scholar 

  24. 24.

    Clyne, T.W., Kurz, W.: Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 12, 965–971 (1981)

    Article  Google Scholar 

  25. 25.

    Ferreira, I.L., Moreira, A.L.S., Aviz, J.A.S., Costa, T.A., Rocha, O.L., Barros, A.S., Garcia, A.: On an expression for the growth of secondary dendrite arm spacing during non-equilibrium solidification of multicomponent alloys: validation against ternary aluminum-based alloys. J. Manuf. Process. 35, 634–650 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by FAPERJ (The Scientific Research Foundation of the State of Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil - Finance Code 001) and CNPq (National Council for Scientific and Technological Development).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Garcia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.L., Garcia, A. The application of numerical and analytical approaches for the determination of thermophysical properties of Al–Si–Cu–Mg alloys. Continuum Mech. Thermodyn. 32, 1231–1244 (2020). https://doi.org/10.1007/s00161-019-00836-5

Download citation

Keywords

  • Computational thermodynamics
  • Thermophysical properties
  • Quaternary Al–Si–Cu–Mg alloys
  • Gibbs–Thomson coefficient