Skip to main content
Log in

An efficient numerical approach to the micromorphic hyperelasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A computationally efficient numerical strategy called as variational differential quadrature-finite element method (VDQFEM) is developed herein for the nonlinear analysis of hyperelastic micromorphic continua. To this end, a novel formulation including microstructure effects is proposed in which high-order tensors are written in equivalent matrix or vector forms, and is then discretized in an efficient way. This feature is utilized in the coding process of numerical method. For the solution purpose, the domain is first transformed into a number of finite elements. Thereafter, a variational discretization technique called as VDQ is applied within each element. In order to employ the VDQ method, the irregular domain of the element is transformed into the regular one using the mapping technique. Finally, the assemblage procedure is performed. This approach can be used for the analysis of bodies with arbitrary geometries. By considering several numerical examples, it is revealed that the presented size-dependent formulation and numerical solution approach have a good performance to study the large deformations of hyperelastic micromorphic bodies with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Google Scholar 

  2. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Google Scholar 

  3. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    ADS  Google Scholar 

  4. McElhancy, K.W., Valsssak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    ADS  Google Scholar 

  5. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Metall. Mater. 46, 5109–5115 (1998)

    Google Scholar 

  6. Bazant, Z.P.: Size effect. Int. J. Solid Struct. 37, 69–80 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Abu Al-Rub, R.K., Voyiadjis, G.Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004)

    Google Scholar 

  8. Nemat-Nasser, A., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, 2 revised edn. Elsevier, North-Holland (1999)

    MATH  Google Scholar 

  9. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24, 212–234 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143, 04016112-1–13 (2017)

    Google Scholar 

  11. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Laudato, M., Di Cosmo, F.: Euromech 579 Arpino 3–8 April 2017: generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers–a review of presentations and discussions. Contin. Mech. Thermodyn. 30(5), 1011–1025 (2018)

    ADS  MATH  Google Scholar 

  13. Cosserat, E., Cosserat, F.: Théorie des corps déformables., Paris (1909)

  14. Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2, 189–203 (1964)

    MathSciNet  MATH  Google Scholar 

  15. Suhubi, E., Eringen, A.C.: Nonlinear theory of micro-elastic solids—II. Int. J. Eng. Sci. 2, 389–404 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    MathSciNet  MATH  Google Scholar 

  17. Eringen, A.C.: Theory of micropolar plates. Zeitschrift für angewandte Mathematik und Physik ZAMP 18, 12–30 (1967)

    ADS  Google Scholar 

  18. Ieşan, D.: On the linear theory of micropolar elasticity. Int. J. Eng. Sci. 7, 1213–1220 (1969)

    MathSciNet  MATH  Google Scholar 

  19. Nowacki, W.: Theory of Micropolar Elasticity. Springer, Berlin (1970)

    MATH  Google Scholar 

  20. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    MATH  Google Scholar 

  21. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  22. Dyszlewicz, J.: Micropolar Theory of Elasticity. Springer, Berlin (2004)

    MATH  Google Scholar 

  23. Trovalusci, P., Masiani, R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)

    MATH  Google Scholar 

  24. Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003)

    Google Scholar 

  25. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Physica A: Stat. Mech. Appl. 322, 359–376 (2003)

    ADS  MATH  Google Scholar 

  26. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (II). Balance laws. Physica A: Stat. Mech. Appl. 322, 377–392 (2003)

    ADS  MATH  Google Scholar 

  27. Randow, C., Gray, G., Costanzo, F.: A directed continuum model of micro-and nano-scale thin films. Int. J. Solids Struct. 43, 1253–1275 (2006)

    MATH  Google Scholar 

  28. Sansour, C., Skatulla, S., Zbib, H.: A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    MATH  Google Scholar 

  29. Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1, 115–135 (2010)

    Google Scholar 

  30. Isbuga, V., Regueiro, R.A.: Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity. Int. J. Eng. Sci. 49, 1326–1336 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Altenbach, H., Eremeyev, V.A.: Strain rate tensors and constitutive equations of inelastic micropolar materials. Int. J. Plast. 63, 3–17 (2014)

    Google Scholar 

  32. He, J.H.: A family of variational principles for linear micromorphic elasticity. Comput. Struct. 81, 2079–2085 (2003)

    MathSciNet  Google Scholar 

  33. Lee, J.D., Wang, X.: Generalized micromorphic solids and fluids. Int. J. Eng. Sci. 49, 1378–1387 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Contin. Mech. Thermodyn. 28, 1659–1670 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Forest, S., Sab, K.: Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids. (2017). https://doi.org/10.1177/1081286517720844

  36. Neff, P., Madeo, A., Barbagallo, G., Valerio d’Agostino, M., Abreu, R., Ghiba, I.D.: Real wave propagation in the isotropic-relaxed micromorphic model. Proc. R. Soc. A Math. Phys. Eng. Sci. (2017). https://doi.org/10.1098/rspa.2016.0790

    Article  MATH  Google Scholar 

  37. Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: Acceleration waves in the nonlinear micromorphic continuum. Mech. Res. Commun. (2017). https://doi.org/10.1016/j.mechrescom.2017.07.004

  38. Kuhl, E., Askes, H., Steinmann, P.: An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: generic hyperelastic formulation. Comput. Methods Appl. Mech. Eng. 193, 4207–4222 (2004)

    ADS  MATH  Google Scholar 

  39. Kirchner, N., Steinmann, P.: On the material setting of gradient hyperelasticity. Math. Mech. Solids 12, 559–580 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Hirschberger, C.B.: A Treatise on Micromorphic Continua. Theory, Homogenization, Computation. Doctoral Thesis (2008)

  41. Hirschberger, C.B., Kuhl, E., Steinmann, P.: On deformational and configurational mechanics of micromorphic hyperelasticity—theory and computation. Comput. Methods Appl. Mech. Eng. 196, 4027–4044 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Leismann, T., Mahnken, R.: Transition from hyperelastic micromorphic to micropolar and microstrain continua. PAMM Proc. Appl. Math. Mech. 15, 329–330 (2015)

    Google Scholar 

  43. Leismann, T., Mahnken, R.: Comparison of hyperelastic micromorphic, micropolar and microstrain continua. Int. J. Non Linear Mech. 77, 115–127 (2015)

    ADS  Google Scholar 

  44. Faghih Shojaei, M., Ansari, R.: Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl. Math. Model. 49, 705–738 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Hassani, R., Ansari, R., Rouhi, H.: A VDQ-based multi-field approach to the 2D compressible nonlinear elasticity. Int. J. Numer. Methods Eng. (2018). https://doi.org/10.1002/nme.6015

  46. Ansari, R., Torabi, J., Hassani, R.: A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates. Eng. Struct. 181, 653–669 (2019)

    Google Scholar 

  47. Torabi, J., Ansari, R., Hassani, R.: Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory. Eur. J. Mech. A Solids 73, 144–160 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, R., Ansari, R. & Rouhi, H. An efficient numerical approach to the micromorphic hyperelasticity. Continuum Mech. Thermodyn. 32, 1011–1036 (2020). https://doi.org/10.1007/s00161-019-00808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00808-9

Keywords

Navigation