Aksoy, H.G.: Wave propagation in heterogeneous media with local and nonlocal material behavior. J. Elast. 122, 1–25 (2016)
MathSciNet
MATH
Google Scholar
Ben Adda, F.: Geometric interpretation of the fractional derivative. J. Fract. Calcul. 11, 21–52 (1997)
MathSciNet
MATH
Google Scholar
Ben Adda, F.: Geometric interpretation of the differentiability and gradient of real order. Comptes Rendus de l’Academie des Sciences. Sciences I: Mathematics 1326, 931–934 (1998)
MathSciNet
MATH
Google Scholar
Ben Adda, F.: The differentiability in the fractional calculus. Comptes Rendus de l’Academie des Sciences. Sciences I: Mathematics 326, 787–790 (1998)
ADS
MathSciNet
MATH
Google Scholar
Ben Adda, F.: The differentiability in fractional calculus. Nonlinear Anal. 47, 5423–5428 (2001)
MathSciNet
MATH
Google Scholar
Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer, Cham (2016)
MATH
Google Scholar
Caffarelli, L., Vázquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)
MathSciNet
MATH
Google Scholar
D’Ovidio, M., Garra, R.: Multidimensional fractional advection-dispersion equations and related stochastic processes. Electron. J. Probab. 19, 1–31 (2014)
MathSciNet
MATH
Google Scholar
Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107, 105–123 (2012)
MathSciNet
MATH
Google Scholar
Engheta, N.: Fractional curl operator in electromagnetics. Microwave Opt. Technol. Lett. 17, 86–91 (1998)
Google Scholar
Estrada, R., Kanwal, R.P.: Asymptotic Analysis. Birkhäuser, Boston (1994)
MATH
Google Scholar
Gel’fand, I.M., Shapiro, Z.Y.: Homogeneous functions and their applications (in Russian). Uspekhi Mat. Nauk 10, 3–70 (1955)
Google Scholar
Gel’fand, I.M., Shilov, G.E.: Generalized Functions I. Properties and Operations. Academic Press, New York (1964)
MATH
Google Scholar
Gel’fand, I.M., Shilov, G.E.: Generalized Functions II. Spaces of Fundamental and Generalized Functions. Academic Press, New York (1968)
MATH
Google Scholar
Hörmander, L.: The Analysis of Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990)
MATH
Google Scholar
Horváth, J.: On some composition formulas. Proc. Am. Math. Soc. 10, 433–437 (1959)
MathSciNet
MATH
Google Scholar
Horváth, J.: Composition of hypersingular integral operators. Appl. Anal. 7, 171–190 (1978)
MathSciNet
MATH
Google Scholar
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
MATH
Google Scholar
Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Frac. Calc. Appl. Anal. 20, 7–51 (2017)
MathSciNet
MATH
Google Scholar
Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)
MATH
Google Scholar
Lemoine, C.: Fourier transforms of homogeneous distribution. Ann. Scuola Normale Superiore di Pisa, Classe di Scienze 3e série 26, 117–149 (1972)
MathSciNet
MATH
Google Scholar
Martínez, C., Sanz, M.: The Theory of Fractional Powers of Operators. Elsevier, Amsterdam (2001)
MATH
Google Scholar
Martínez, C., Sanz, M., Periago, F.: Distributional fractional powers of the Laplacean. Riesz potentials. Stud. Math. 135, 253–271 (1999)
MathSciNet
MATH
Google Scholar
Meerschaert, M.M., Benson, D.A., Baeumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026–5028 (1999)
ADS
Google Scholar
Meerschaert, M.M., Mortensen, J., Scheffler, H.P.: Vector Grünwald formula for fractional derivatives. Fract. Calc. Appl. Anal. 7, 61–81 (2004)
MathSciNet
MATH
Google Scholar
Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Phys. A 367, 181–190 (2006)
Google Scholar
Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
MATH
Google Scholar
Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)
MATH
Google Scholar
Ortigueira, M.D., Laleg-Kirati, T.-M., Tenreiro Machado, J.A.: Riesz potential versus fractional Laplacian. J. Stat. Mech. Theory Exp. 2014, P09032 (2014)
MathSciNet
Google Scholar
Ortigueira, M.D., Rivero, M., Trujillo, J.J.: From a generalised Helmholtz decomposition theorem to fractional Maxwell equations. Commun. Nonlinear Sci. Numer. Simul. 22, 1036–1049 (2015)
ADS
MathSciNet
MATH
Google Scholar
Ortner, N.: On some contributions of John Horváth to the theory of distributions. J. Math. Anal. Appl. 297, 353–383 (2004)
MathSciNet
MATH
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
MATH
Google Scholar
Pozrikidis, C.: The Fractional Laplacian. CRC Press, Boca Raton (2016)
MATH
Google Scholar
Riesz, M.: L’intégrale de Riemann-Liouville et le probleme de Cauchy pour l’équation des ondes. BulL Soc. math. France. 67, 153–170 (1939)
MathSciNet
MATH
Google Scholar
Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)
MATH
Google Scholar
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Amsterdam (1993)
MATH
Google Scholar
Schikorra, A., Shieh, T.-T., Spector, D.: \(L^p\)-theory for fractional gradient PDE with VMO coefficients. Rendiconti della Accademia dei Lincei 26, 433–443 (2015)
MathSciNet
MATH
Google Scholar
Schwartz, L.: Théorie des Distributions. Herrman, Paris (1966)
MATH
Google Scholar
Shieh, T.-T., Spector, D.E.: On a new class of fractional partial differential equations. Adv. Calc. Var. 8, 321–336 (2015)
MathSciNet
MATH
Google Scholar
Shieh, T.-T., Spector, D.E.: On a new class of fractional partial differential equations II. Adv. Calc. Var. 11, 289–307 (2018)
MathSciNet
MATH
Google Scholar
Tarasov, V.E.: Fractional generalization of gradient systems. Lett. Math. Phys. 73, 49–58 (2005)
ADS
MathSciNet
MATH
Google Scholar
Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)
ADS
MathSciNet
MATH
Google Scholar
Tarasov, V.E.: Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010)
MATH
Google Scholar