Skip to main content
Log in

Thermomechanical characterization and modeling of fast-curing polyurethane adhesives

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the context of lightweight design and modern hybrid technologies, the importance of structural and soft adhesives in industrial applications is increasing. Therefore, this paper examines a relatively soft polyurethane adhesive characterized by showing nonlinear viscoelastic behavior at room temperature and enduring large deformations. It is well suited for applications under dynamic loadings and can compensate gap changes generated by materials with different thermal expansion coefficients. Theoretically, the examined one-component polyurethane adhesive can be cured either thermally or through humidity, resulting in the same mechanical characteristics. Comparing both curing reactions, humidity curing is much slower than thermal curing. The latter can be controlled through the temperature, which may be applied through heating rates of up to \(150\,\hbox {K}\,\hbox {min}^{-1}\). However, in comparison with metals polyurethane conducts the heat with a much smaller rate which results in high temperature gradients within the adhesive layer. This paper focuses on the modeling of a fast-curing polyurethane adhesive under consideration of the changes in density and thermomechanical material properties induced by thermal curing. Therefore, the material properties need to be observed throughout the thermal curing process, from the uncured fluid to the cured rubber material. In the long term, the accurate prediction of the materials behavior will ultimately facilitate the optimization of the curing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolf, D.B., Chambers, R.S.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling thermosets during cure. J. Rheol. 51(1), 23–50 (2007)

    Article  ADS  Google Scholar 

  2. Deutsches Institut für Normung e.V.: DIN 51007 Thermische Analyse (TA), Differenzthermoanalyse (DTA) (1994)

  3. Enns, J.B., Gillham, J.K.: Time-temperature-transformation (TTT) cure diagram: modeling the cure behavior of thermosets. J. Appl. Polym. Sci. 28(8), 2567–2591 (1983)

    Article  Google Scholar 

  4. Fournier, J., Williams, G., Duch, C., Aldridge, G.A.: Changes in molecular dynamics during bulk polymerization of an epoxide-amine system as studied by dielectric relaxation spectroscopy. Macromolecules 29(22), 7097–7107 (1996)

    Article  ADS  Google Scholar 

  5. Grambow, A.: Bestimmung der Materialparameter gefüllter Elastomere in Abhängigkeit von Zeit, Temperatur und Beanspruchungszustand. Ph.D. thesis. RWTH Aachen (2002)

  6. Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44(5), 621–630 (2009a)

    Article  MathSciNet  Google Scholar 

  7. Hossain, M., Possart, G., Steinmann, P.: A small-strain model to simulate the curing of thermosets. Comput. Mech. 43(6), 769–779 (2009b)

    Article  Google Scholar 

  8. Leistner, C., Hartmann, S., Abliz, D., Ziegmann, G.: Modeling and simulation of the curing process of epoxy resins using finite elements. Continuum Mech. Thermodyn. 1–24 (2018). https://doi.org/10.1007/s00161-018-0708-9

  9. Leistner, C., Hartmann, S., Wittrock, J., Bode, K.: Shrinkage behavior of araldite epoxy resin using archimedes’ principle. Polym. Test. 67, 409–416 (2018b)

    Article  Google Scholar 

  10. Liebl, C.: Viskoelastisch-viskoplastische Modellierung von Strukturklebstoffen während der Aushärtung. Ph.D. thesis. Bundeswehr University Munich (2014)

  11. Lion, A.: Einführung in die lineare viskoelastizität. In: Beiträge zur Materialtheorie. A. Lion (2007)

  12. Lion, A., Höfer, P.: On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59(1), 59–89 (2006)

    MATH  Google Scholar 

  13. Mahnken, R.: Thermodynamic consistent modeling of polymer curing coupled to visco-elasticity at large strains. Int. J. Solids Struct. 50(13), 2003–2021 (2013)

    Article  Google Scholar 

  14. Pahl, M., Gleißle, W., Laun, H.M.: Praktische Rheologie der Kunststoffe und Elastomere. VDI-Gesellschaft Kunststofftechnik (1991)

  15. Rabearison, N., Jochum, C., Grandidier, J.C.: A cure kinetics, diffusion controlled and temperature dependent, identification of the araldite ly556 epoxy. J. Mater. Sci. 46(3), 787–796 (2011)

    Article  ADS  Google Scholar 

  16. Shutov, A.V., Landgraf, R., Ihlemann, J.: An explicit solution for implicit time stepping in finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 265, 213–225 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Sourour, S., Kamal, M.R.: Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochimica Acta 14, 41–59 (1976)

    Article  Google Scholar 

  18. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  19. Yagimli, B.: Kontinuumsmechanische Betrachtung von Aushärtevorgängen. Ph.D. thesis. Bundeswehr University Munich (2013)

  20. Yagimli, B., Lion, A.: Experimental investigations and material modelling of curing processes under small deformations. J. Appl. Math. Mech. 91(5), 342–359 (2011)

    MATH  Google Scholar 

  21. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. 35(12), 1919–1931 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) (Grant No. LI696/17-1) for funding the research project from which this paper resulted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Jennrich.

Additional information

Communicated by Michael Johlitz, Lucien Laiarinandrasana, Yann Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jennrich, R., Lion, A., Johlitz, M. et al. Thermomechanical characterization and modeling of fast-curing polyurethane adhesives. Continuum Mech. Thermodyn. 32, 421–432 (2020). https://doi.org/10.1007/s00161-019-00788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00788-w

Keywords

Navigation