Abbassi, L., Sousse, H.: Energy storage using the phase change materials : application to the thermal insulation. Int. J. Technol. 5, 142–151 (2014)
Article
Google Scholar
Agyenim, F., Hewitt, N., Eames, P., Smyth, M.: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14, 615–628 (2010)
Article
Google Scholar
Aldoss, T.K., Rahman, M.M.: Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Convers. Manag. 83, 79–87 (2014)
Article
Google Scholar
Amhalhel, G., Furmanski, P.: Problems of modeling flow and heat transfer in porous media. J. Power Technol. 85, 55–88 (1997)
Google Scholar
Anderson, D., McFadden, G., Wheeler, A.: A phase-field model of solidification with convection. Physica D Nonlinear Phenom. 135, 175–194 (2000)
ADS
MathSciNet
MATH
Article
Google Scholar
Armero, F., Simo, J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)
MATH
Article
Google Scholar
Beckermann, C., Diepers, H.J., Steinbach, I., Karma, A., Tong, X.: Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)
ADS
MATH
Article
Google Scholar
Bluhm, J., Bloßfeld, W.M., Ricken, T.: Energetic effects during phase transition under freezing-thawing load in porous media—a continuum multiphase description and FE-simulation. ZAMM J. Appl. Math. Mech. 94, 586–608 (2014)
MathSciNet
MATH
Article
Google Scholar
Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)
Article
Google Scholar
Bowen, R.M.: Theory of mixture. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 2–129. Academic Press (1976)
Bufalo, G.D., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)
ADS
Article
Google Scholar
Caginalp, G., Socolovsky, E.A.: Efficient computation of a sharp interface by spreading via phase-field methods. Appl. Math. Lett. 2, 117–120 (1989)
MathSciNet
MATH
Article
Google Scholar
Caginalp, G., Socolovsky, E.A.: Computation of sharp phase boundaries by spreading: the planar and spherically symmetric cases. J. Comput. Phys. 95, 85–100 (1991)
ADS
MathSciNet
MATH
Article
Google Scholar
Calmidi, V.V., Mahajan, R.L.: The effective thermal conductivity of high porosity fibrous metal foams. J. Heat Transf. 121, 466–471 (1999)
Article
Google Scholar
Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat Transf. 122, 557–565 (2000)
Article
Google Scholar
Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)
Article
Google Scholar
Collins, J.B., Levine, H.: Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B 31, 6119–6122 (1985)
ADS
Article
Google Scholar
de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)
MATH
Book
Google Scholar
de Boer, R., Ehlers, W.: Development of the concept of effective stress. Acta Mech. 83, 77–92 (1990)
MathSciNet
MATH
Article
Google Scholar
Diebels, S., Ehlers, W.: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int. J. Numer. Methods Eng. 39, 81–97 (1996)
MATH
Article
Google Scholar
Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2949–2963 (2006)
ADS
MathSciNet
MATH
Article
Google Scholar
Dutil, Y., Rousse, D.R., Salah, N.B., Lassue, S., Zalewski, L.: A review on phase-change materials: Mathematical modeling and simulations. Renew. Sustain. Energy Rev. 15, 112–130 (2011)
Article
Google Scholar
Ehlers, W.: Foundations of Multiphasic and Porous Materials, pp. 3–86. Springer, Berlin (2002)
MATH
Google Scholar
Elgafy, A., Lafdi, K.: Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon N. Y. 43, 3067–3074 (2005)
Article
Google Scholar
Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Conserv. Manag. 45, 1597–1615 (2004)
Article
Google Scholar
Ferreira, A.F., Ferreira, L.d.O., Assis, A.d.C.: Numerical simulation of the solidification of pure melt by a phase-field model using an adaptive computation domain. J. Braz. Soc. Mech. Sci. Eng. 33, 125–130 (2011)
Article
Google Scholar
Fok, S.C., Shen, W., Tan, F.L.: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int. J. Therm. Sci. 49, 109–117 (2010)
Article
Google Scholar
Gao, C., Kuklane, K., Holmer, I.: Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area. Ergonomics 53, 716–723 (2010)
Article
Google Scholar
George, J.: Phase Field Methods for Free Boundary Problems, pp. 580–589. Design Research Center, Carnegie-Mellon University, Pittsburgh (1983)
Google Scholar
Greenhill, E.B., McDonald, S.R.: Surface free-energy of solid paraffin wax. Nature 171, 37–37 (1953)
ADS
Article
Google Scholar
Hallaj, S.A., Selman, J.R.: A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 147, 3231–3236 (2000)
Article
Google Scholar
Han, X.X., Tian, Y., Zhao, C.Y.: An effectiveness study of enhanced heat transfer in phase change materials (PCMs). Int. J. Heat Mass Transf. 60, 459–468 (2013)
Article
Google Scholar
He, B., Martin, V., Setterwall, F.: Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy 29, 1785–1804 (2004)
Article
Google Scholar
Heider, Y.: Saturated Porous Media Dynamics with Application to Earthquake Engineering. Ph.D. thesis, University of Stuttgart (2012)
Jamekhorshid, A., Sadrameli, S.M., Farid, M.: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 31, 531–542 (2014)
Article
Google Scholar
Jmal, I., Baccar, M.: Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl. Therm. Eng. 84, 320–330 (2015)
Article
Google Scholar
Karma, A., Rappel, W.J.: Quantitative phase field modelling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1997)
ADS
MATH
Article
Google Scholar
Khodadadi, J.M., Zhang, Y.: Effects of buoyancy-driven convection on melting within spherical containers. Int. J. Heat Mass Transf. 44, 1605–1618 (2001)
MATH
Article
Google Scholar
Kibria, M.A., Anisur, M.R., Mahfuz, M.H., Saidur, R., Metselaar, I.H.: A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers. Manag. 95, 69–89 (2015)
Article
Google Scholar
Klimes, L., Mauder, T., Charvat, P., Stetina, J.: An accuracy analysis of the front tracking method and interface capturing methods for the solution of heat transfer problems with phase changes. J. Phys. Conf. Ser. 745, 032136 (2016)
Article
Google Scholar
Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 63, 410–423 (1993)
ADS
MATH
Article
Google Scholar
Kobayashi, R.: A numerical approach to three-dimensional dendritic solidification. Exp. Math. 3, 59–81 (1994)
MathSciNet
MATH
Article
Google Scholar
Konuklu, Y., Ostry, M., Paksoy, H.O., Charvat, P.: Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 106, 134–155 (2015)
Article
Google Scholar
Langer, J.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980)
ADS
Article
Google Scholar
Liu, M., Saman, W., Bruno, F.: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 16, 2118–2132 (2012)
Article
Google Scholar
Mahajan, R.L.: Transport Phenomena in High Porosity Metal Foams. Ph.D. thesis, University of Colorado (2001)
Markert, B.: A biphasic continuum approach for viscoelastic high-porosity foams: comprehensive theory, numerics, and application. Arch. Comput. Methods Eng. 15, 371–446 (2008)
MathSciNet
MATH
Article
Google Scholar
Markert, B.: Coupled thermo- and electrodynamics of multiphasic continua. In: Markert, B. (ed.) Advances in Extended and Multifield Theories for Continua, pp. 129–152. Springer, Berlin (2011)
Chapter
Google Scholar
Markert, B.: A survey of selected coupled multifield problems in computational mechanics. J. Coupled Syst. Multiscale Dyn. 1, 22–27 (2013)
Article
Google Scholar
Markert, B., Heider, Y., Ehlers, W.: Comparison of monolithic and splitting solution schemes for dynamic porous media problems. Int. J. Numer. Methods Eng. 82, 1341–1383 (2010)
MathSciNet
MATH
Google Scholar
Mekaddem, N., Ben Ali, S., Hannachi, A., Mazioud, A., Foi, M.: Latent energy storage study in simple and honeycomb structures filled with a phase change material. In: IREC 2016—7th International Renewable Energy Congress. IEEE (2016)
Mettawee, E.B.S., Assassa, G.M.R.: Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007)
ADS
Article
Google Scholar
Mills, A., Farid, M., Selman, J.R., Al-Hallaj, S.: Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl. Therm. Eng. 26, 1652–1661 (2006)
Article
Google Scholar
Moreno, P., Castell, A., Sole, C., Zsembinszki, G., Cabeza, L.F.: PCM thermal energy storage tanks in heat pump system for space cooling. Energy Build. 82, 399–405 (2014)
Article
Google Scholar
Na, S., Sun, W.: Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range. Comput. Methods Appl. Mech. Eng. 318, 667–700 (2017)
ADS
MathSciNet
MATH
Article
Google Scholar
Patil, S.P., Heider, Y., Hernandez Padilla, C.A., Cruz-Chú, E., Markert, B.: A comparative molecular dynamics-phase-field modeling approach to brittle fracture. Comput. Methods Appl. Mech. Eng. 312, 117–129 (2016)
ADS
MathSciNet
MATH
Article
Google Scholar
Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27(4), 582–606 (2008)
ADS
MathSciNet
MATH
Article
Google Scholar
Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409 (2006)
ADS
MathSciNet
MATH
Article
Google Scholar
Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)
Book
Google Scholar
Rahimi, M., Ranjbar, A.A., Ganji, D.D., Sedighi, K., Hosseini, M.J.: Experimental investigation of phase change inside a finned-tube heat exchanger. J. Eng. 2014, 1–11 (2014)
Article
Google Scholar
Reddy, K.S., Mudgal, V., Mallick, T.K.: Thermal performance analysis of multi-phase change material layer-integrated building roofs for energy efficiency in built-environment. Energies 10, 1367 (2017)
Article
Google Scholar
Sanyal, D., Rao, P.R., Gupta, O.P.: Modelling of free boundary problems for phase change with diffuse interfaces. Math. Probl. Eng. 2005, 309–324 (2005)
MathSciNet
MATH
Article
Google Scholar
Sarler, B.: Stefan’s work on solid-liquid phase changes. Eng. Anal. Bound. Elem. 7997, 83–92 (1995)
Article
Google Scholar
Shah, A., Haider, A., Shah, S.K.: Numerical simulation of two-dimensional dendritic growth using phase-field model. World J. Mech. 4, 128–136 (2014)
ADS
Article
Google Scholar
Shaikh, S., Lafdi, K.: Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers. Manag. 47, 2103–2117 (2006)
Article
Google Scholar
Sharifi, N., Wang, S., Bergman, T.L., Faghri, A.: Heat pipe-assisted melting of a phase change material. Int. J. Heat Mass Transf. 55, 3458–3469 (2012)
Article
Google Scholar
Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)
Article
Google Scholar
Singer-Loginova, I., Singer, H.M.: The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 71, 106501 (2008)
ADS
Article
Google Scholar
Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)
ADS
Article
Google Scholar
Surana, K., Joy, A., Quiros, L., Reddy, J.: Mathematical models and numerical solutions of liquid-solid and solid-liquid phase change. J. Therm. Eng. 1, 61–98 (2015)
Article
Google Scholar
Sweidan, A., Ghaddar, N., Ghali, K.: Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. J. Renew. Sustain. Energy 8, 023501 (2016)
Article
Google Scholar
Truesdell, C.: The Origins of Rational Thermodynamics. Springer, New York (1984)
MATH
Book
Google Scholar
Tyagi, V.V., Buddhi, D.: PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 11(6), 1146–1166 (2007)
Article
Google Scholar
Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24, 271–284 (1987)
MATH
Article
Google Scholar
Wang, S.L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R.J., McFadden, G.B.: Thermodynamically-consistent phase-field models for solidification. Physica D Nonlinear Phenom. 69, 189–200 (1993)
ADS
MathSciNet
MATH
Article
Google Scholar
Wang, W., Yang, X., Fang, Y., Ding, J.: Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl. Energy 86, 170–174 (2009)
Article
Google Scholar
Waqas, A., Kumar, S.: Phase change material (PCM)-based solar air heating system for residential space heating in winter. Int. J. Green Energy 10, 402–426 (2013)
Article
Google Scholar
Wheeler, A., Ahmad, N., Boettinger, W., Braun, R., McFadden, G., Murray, B.: Recent developments in phase-field models of solidification. Adv. Space Res. 16, 163–172 (1995)
ADS
Article
Google Scholar
Woods, A.W.: Convection driven phase change and mass transfer. In: Davis, S.H., Huppert, H.E., Müller, U., Worster, M.G. (eds.) Interactive Dynamics of Convection and Solidification, pp. 269–271. Springer, Dordrecht (1992)
Chapter
Google Scholar
Yang, S., Tao, W.: Heat Transfer, 4th edn. Higher Education Press, Beijing (2006)
Google Scholar
Zaeem, M.A., Yin, H., Felicelli, S.D.: Comparison of cellular automaton and phase field models to simulate dendrite growth in hexagonal crystals. J. Mater. Sci. Technol. 28, 137–146 (2012)
Article
Google Scholar
Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)
Article
Google Scholar
Zhang, P., Meng, Z.N., Zhu, H., Wang, Y.L., Peng, S.P.: Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl. Energy 185, 1971–1983 (2017)
Article
Google Scholar
Zhang, P., Xiao, X., Meng, Z.N., Li, M.: Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Appl. Energy 137, 758–772 (2015)
Article
Google Scholar
Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55, 3618–3632 (2012)
Article
Google Scholar
Zhao, C.Y., Kim, T., Lu, T.J., Hodson, H.P.: Thermal transport in high porosity cellular metal foams. J. Thermophys. Heat Transf. 18, 309–317 (2004)
Article
Google Scholar
Zhao, C.Y., Zhou, D., Wu, Z.G.: Heat transfer of phase change materials (PCMs) in porous materials. Front. Energy 5(2), 174–180 (2011)
Article
Google Scholar
Zhao, Y., Zhao, C.Y., Xu, Z.G.: Numerical study of solid-liquid phase change by phase field method. Comput. Fluids 164, 94–101 (2018)
MathSciNet
MATH
Article
Google Scholar
Zhao, Y., Zhao, C.Y., Xu, Z.G., Xu, H.J.: Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method. Int. J. Heat Mass Transf. 99, 170–181 (2016)
Article
Google Scholar
Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)
MATH
Google Scholar
Zukauskas, A.: Advances in heat transfer. Adv. Heat Transf. 8, 93–160 (1972)
Article
Google Scholar