Skip to main content

Advertisement

Log in

Modeling of PCM-based enhanced latent heat storage systems using a phase-field-porous media approach

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper introduces a numerical study of latent heat storage systems, based on phase-change materials (PCMs) with various heat transfer enhancement techniques. In this, three alternative systems are considered: (1) a PCM-saturated open-celled metallic foam, (2) multiple immiscible PCM constituents with different melting temperatures and (3) a PCM-storage system with energy exchange enhancement using highly conductive fins. For the PCM-saturated porous medium, a biphasic model with intrinsically coupled and incompressible solid and fluid constituents is presented, where the modeling is based on the theory of porous media (TPM). A local thermal nonequilibrium model is used to describe the heat transfer process between the metal foams and the PCM, and the phase-field method (PFM) is employed to account for the phase-change process. It is shown in the numerical examples that the PFM–TPM approach is a reliable method to simulate the phase-change problems in different configurations considering the effect of natural convection on the macroscale, where a comparison with results from the literature-based experimental data and numerical methods has been carried out. It is also shown that the PFM–TPM formulations can, by simple modifications, be used to describe the PCM in nonporous ambient. In the latent heat storage systems, it is found that the studied methods can serve well in the efforts to increasing the melting rate and enhancing the heat storage process. It is shown that the PCM-saturated metallic foam provides the best enhancement among the other methods. Additionally, the energy charging rate depends on the arrangement type of the multiple PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbassi, L., Sousse, H.: Energy storage using the phase change materials : application to the thermal insulation. Int. J. Technol. 5, 142–151 (2014)

    Article  Google Scholar 

  2. Agyenim, F., Hewitt, N., Eames, P., Smyth, M.: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14, 615–628 (2010)

    Article  Google Scholar 

  3. Aldoss, T.K., Rahman, M.M.: Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Convers. Manag. 83, 79–87 (2014)

    Article  Google Scholar 

  4. Amhalhel, G., Furmanski, P.: Problems of modeling flow and heat transfer in porous media. J. Power Technol. 85, 55–88 (1997)

    Google Scholar 

  5. Anderson, D., McFadden, G., Wheeler, A.: A phase-field model of solidification with convection. Physica D Nonlinear Phenom. 135, 175–194 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Armero, F., Simo, J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Article  MATH  Google Scholar 

  7. Beckermann, C., Diepers, H.J., Steinbach, I., Karma, A., Tong, X.: Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)

    Article  ADS  MATH  Google Scholar 

  8. Bluhm, J., Bloßfeld, W.M., Ricken, T.: Energetic effects during phase transition under freezing-thawing load in porous media—a continuum multiphase description and FE-simulation. ZAMM J. Appl. Math. Mech. 94, 586–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)

    Article  Google Scholar 

  10. Bowen, R.M.: Theory of mixture. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 2–129. Academic Press (1976)

  11. Bufalo, G.D., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)

    Article  ADS  Google Scholar 

  12. Caginalp, G., Socolovsky, E.A.: Efficient computation of a sharp interface by spreading via phase-field methods. Appl. Math. Lett. 2, 117–120 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caginalp, G., Socolovsky, E.A.: Computation of sharp phase boundaries by spreading: the planar and spherically symmetric cases. J. Comput. Phys. 95, 85–100 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Calmidi, V.V., Mahajan, R.L.: The effective thermal conductivity of high porosity fibrous metal foams. J. Heat Transf. 121, 466–471 (1999)

    Article  Google Scholar 

  15. Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat Transf. 122, 557–565 (2000)

    Article  Google Scholar 

  16. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  17. Collins, J.B., Levine, H.: Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B 31, 6119–6122 (1985)

    Article  ADS  Google Scholar 

  18. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  19. de Boer, R., Ehlers, W.: Development of the concept of effective stress. Acta Mech. 83, 77–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diebels, S., Ehlers, W.: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int. J. Numer. Methods Eng. 39, 81–97 (1996)

    Article  MATH  Google Scholar 

  21. Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2949–2963 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dutil, Y., Rousse, D.R., Salah, N.B., Lassue, S., Zalewski, L.: A review on phase-change materials: Mathematical modeling and simulations. Renew. Sustain. Energy Rev. 15, 112–130 (2011)

    Article  Google Scholar 

  23. Ehlers, W.: Foundations of Multiphasic and Porous Materials, pp. 3–86. Springer, Berlin (2002)

    MATH  Google Scholar 

  24. Elgafy, A., Lafdi, K.: Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon N. Y. 43, 3067–3074 (2005)

    Article  Google Scholar 

  25. Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Conserv. Manag. 45, 1597–1615 (2004)

    Article  Google Scholar 

  26. Ferreira, A.F., Ferreira, L.d.O., Assis, A.d.C.: Numerical simulation of the solidification of pure melt by a phase-field model using an adaptive computation domain. J. Braz. Soc. Mech. Sci. Eng. 33, 125–130 (2011)

    Article  Google Scholar 

  27. Fok, S.C., Shen, W., Tan, F.L.: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int. J. Therm. Sci. 49, 109–117 (2010)

    Article  Google Scholar 

  28. Gao, C., Kuklane, K., Holmer, I.: Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area. Ergonomics 53, 716–723 (2010)

    Article  Google Scholar 

  29. George, J.: Phase Field Methods for Free Boundary Problems, pp. 580–589. Design Research Center, Carnegie-Mellon University, Pittsburgh (1983)

    Google Scholar 

  30. Greenhill, E.B., McDonald, S.R.: Surface free-energy of solid paraffin wax. Nature 171, 37–37 (1953)

    Article  ADS  Google Scholar 

  31. Hallaj, S.A., Selman, J.R.: A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 147, 3231–3236 (2000)

    Article  Google Scholar 

  32. Han, X.X., Tian, Y., Zhao, C.Y.: An effectiveness study of enhanced heat transfer in phase change materials (PCMs). Int. J. Heat Mass Transf. 60, 459–468 (2013)

    Article  Google Scholar 

  33. He, B., Martin, V., Setterwall, F.: Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy 29, 1785–1804 (2004)

    Article  Google Scholar 

  34. Heider, Y.: Saturated Porous Media Dynamics with Application to Earthquake Engineering. Ph.D. thesis, University of Stuttgart (2012)

  35. Jamekhorshid, A., Sadrameli, S.M., Farid, M.: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 31, 531–542 (2014)

    Article  Google Scholar 

  36. Jmal, I., Baccar, M.: Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl. Therm. Eng. 84, 320–330 (2015)

    Article  Google Scholar 

  37. Karma, A., Rappel, W.J.: Quantitative phase field modelling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1997)

    Article  ADS  MATH  Google Scholar 

  38. Khodadadi, J.M., Zhang, Y.: Effects of buoyancy-driven convection on melting within spherical containers. Int. J. Heat Mass Transf. 44, 1605–1618 (2001)

    Article  MATH  Google Scholar 

  39. Kibria, M.A., Anisur, M.R., Mahfuz, M.H., Saidur, R., Metselaar, I.H.: A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers. Manag. 95, 69–89 (2015)

    Article  Google Scholar 

  40. Klimes, L., Mauder, T., Charvat, P., Stetina, J.: An accuracy analysis of the front tracking method and interface capturing methods for the solution of heat transfer problems with phase changes. J. Phys. Conf. Ser. 745, 032136 (2016)

    Article  Google Scholar 

  41. Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 63, 410–423 (1993)

    Article  ADS  MATH  Google Scholar 

  42. Kobayashi, R.: A numerical approach to three-dimensional dendritic solidification. Exp. Math. 3, 59–81 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Konuklu, Y., Ostry, M., Paksoy, H.O., Charvat, P.: Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 106, 134–155 (2015)

    Article  Google Scholar 

  44. Langer, J.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980)

    Article  ADS  Google Scholar 

  45. Liu, M., Saman, W., Bruno, F.: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 16, 2118–2132 (2012)

    Article  Google Scholar 

  46. Mahajan, R.L.: Transport Phenomena in High Porosity Metal Foams. Ph.D. thesis, University of Colorado (2001)

  47. Markert, B.: A biphasic continuum approach for viscoelastic high-porosity foams: comprehensive theory, numerics, and application. Arch. Comput. Methods Eng. 15, 371–446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Markert, B.: Coupled thermo- and electrodynamics of multiphasic continua. In: Markert, B. (ed.) Advances in Extended and Multifield Theories for Continua, pp. 129–152. Springer, Berlin (2011)

    Chapter  Google Scholar 

  49. Markert, B.: A survey of selected coupled multifield problems in computational mechanics. J. Coupled Syst. Multiscale Dyn. 1, 22–27 (2013)

    Article  Google Scholar 

  50. Markert, B., Heider, Y., Ehlers, W.: Comparison of monolithic and splitting solution schemes for dynamic porous media problems. Int. J. Numer. Methods Eng. 82, 1341–1383 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Mekaddem, N., Ben Ali, S., Hannachi, A., Mazioud, A., Foi, M.: Latent energy storage study in simple and honeycomb structures filled with a phase change material. In: IREC 2016—7th International Renewable Energy Congress. IEEE (2016)

  52. Mettawee, E.B.S., Assassa, G.M.R.: Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007)

    Article  ADS  Google Scholar 

  53. Mills, A., Farid, M., Selman, J.R., Al-Hallaj, S.: Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl. Therm. Eng. 26, 1652–1661 (2006)

    Article  Google Scholar 

  54. Moreno, P., Castell, A., Sole, C., Zsembinszki, G., Cabeza, L.F.: PCM thermal energy storage tanks in heat pump system for space cooling. Energy Build. 82, 399–405 (2014)

    Article  Google Scholar 

  55. Na, S., Sun, W.: Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range. Comput. Methods Appl. Mech. Eng. 318, 667–700 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Patil, S.P., Heider, Y., Hernandez Padilla, C.A., Cruz-Chú, E., Markert, B.: A comparative molecular dynamics-phase-field modeling approach to brittle fracture. Comput. Methods Appl. Mech. Eng. 312, 117–129 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27(4), 582–606 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Book  Google Scholar 

  60. Rahimi, M., Ranjbar, A.A., Ganji, D.D., Sedighi, K., Hosseini, M.J.: Experimental investigation of phase change inside a finned-tube heat exchanger. J. Eng. 2014, 1–11 (2014)

    Article  Google Scholar 

  61. Reddy, K.S., Mudgal, V., Mallick, T.K.: Thermal performance analysis of multi-phase change material layer-integrated building roofs for energy efficiency in built-environment. Energies 10, 1367 (2017)

    Article  Google Scholar 

  62. Sanyal, D., Rao, P.R., Gupta, O.P.: Modelling of free boundary problems for phase change with diffuse interfaces. Math. Probl. Eng. 2005, 309–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Sarler, B.: Stefan’s work on solid-liquid phase changes. Eng. Anal. Bound. Elem. 7997, 83–92 (1995)

    Article  Google Scholar 

  64. Shah, A., Haider, A., Shah, S.K.: Numerical simulation of two-dimensional dendritic growth using phase-field model. World J. Mech. 4, 128–136 (2014)

    Article  ADS  Google Scholar 

  65. Shaikh, S., Lafdi, K.: Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers. Manag. 47, 2103–2117 (2006)

    Article  Google Scholar 

  66. Sharifi, N., Wang, S., Bergman, T.L., Faghri, A.: Heat pipe-assisted melting of a phase change material. Int. J. Heat Mass Transf. 55, 3458–3469 (2012)

    Article  Google Scholar 

  67. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  Google Scholar 

  68. Singer-Loginova, I., Singer, H.M.: The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 71, 106501 (2008)

    Article  ADS  Google Scholar 

  69. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    Article  ADS  Google Scholar 

  70. Surana, K., Joy, A., Quiros, L., Reddy, J.: Mathematical models and numerical solutions of liquid-solid and solid-liquid phase change. J. Therm. Eng. 1, 61–98 (2015)

    Article  Google Scholar 

  71. Sweidan, A., Ghaddar, N., Ghali, K.: Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. J. Renew. Sustain. Energy 8, 023501 (2016)

    Article  Google Scholar 

  72. Truesdell, C.: The Origins of Rational Thermodynamics. Springer, New York (1984)

    Book  MATH  Google Scholar 

  73. Tyagi, V.V., Buddhi, D.: PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 11(6), 1146–1166 (2007)

    Article  Google Scholar 

  74. Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24, 271–284 (1987)

    Article  MATH  Google Scholar 

  75. Wang, S.L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R.J., McFadden, G.B.: Thermodynamically-consistent phase-field models for solidification. Physica D Nonlinear Phenom. 69, 189–200 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Wang, W., Yang, X., Fang, Y., Ding, J.: Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl. Energy 86, 170–174 (2009)

    Article  Google Scholar 

  77. Waqas, A., Kumar, S.: Phase change material (PCM)-based solar air heating system for residential space heating in winter. Int. J. Green Energy 10, 402–426 (2013)

    Article  Google Scholar 

  78. Wheeler, A., Ahmad, N., Boettinger, W., Braun, R., McFadden, G., Murray, B.: Recent developments in phase-field models of solidification. Adv. Space Res. 16, 163–172 (1995)

    Article  ADS  Google Scholar 

  79. Woods, A.W.: Convection driven phase change and mass transfer. In: Davis, S.H., Huppert, H.E., Müller, U., Worster, M.G. (eds.) Interactive Dynamics of Convection and Solidification, pp. 269–271. Springer, Dordrecht (1992)

    Chapter  Google Scholar 

  80. Yang, S., Tao, W.: Heat Transfer, 4th edn. Higher Education Press, Beijing (2006)

    Google Scholar 

  81. Zaeem, M.A., Yin, H., Felicelli, S.D.: Comparison of cellular automaton and phase field models to simulate dendrite growth in hexagonal crystals. J. Mater. Sci. Technol. 28, 137–146 (2012)

    Article  Google Scholar 

  82. Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Article  Google Scholar 

  83. Zhang, P., Meng, Z.N., Zhu, H., Wang, Y.L., Peng, S.P.: Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl. Energy 185, 1971–1983 (2017)

    Article  Google Scholar 

  84. Zhang, P., Xiao, X., Meng, Z.N., Li, M.: Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Appl. Energy 137, 758–772 (2015)

    Article  Google Scholar 

  85. Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55, 3618–3632 (2012)

    Article  Google Scholar 

  86. Zhao, C.Y., Kim, T., Lu, T.J., Hodson, H.P.: Thermal transport in high porosity cellular metal foams. J. Thermophys. Heat Transf. 18, 309–317 (2004)

    Article  Google Scholar 

  87. Zhao, C.Y., Zhou, D., Wu, Z.G.: Heat transfer of phase change materials (PCMs) in porous materials. Front. Energy 5(2), 174–180 (2011)

    Article  Google Scholar 

  88. Zhao, Y., Zhao, C.Y., Xu, Z.G.: Numerical study of solid-liquid phase change by phase field method. Comput. Fluids 164, 94–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhao, Y., Zhao, C.Y., Xu, Z.G., Xu, H.J.: Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method. Int. J. Heat Mass Transf. 99, 170–181 (2016)

    Article  Google Scholar 

  90. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  91. Zukauskas, A.: Advances in heat transfer. Adv. Heat Transf. 8, 93–160 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Heider.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweidan, A.H., Heider, Y. & Markert, B. Modeling of PCM-based enhanced latent heat storage systems using a phase-field-porous media approach. Continuum Mech. Thermodyn. 32, 861–882 (2020). https://doi.org/10.1007/s00161-019-00764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00764-4

Keywords

Navigation