Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy


Even for a moderate actuation, a large electric voltage requirement hinders the application of electro-active polymers (EAPs) in many areas. Hence, among other mechanisms, the actuation enhancement in EAPs is performed via inclusions of high-dielectric-permittivity fillers in the matrix material in the uncured stage. Moreover, to obtain an optimum advantage from the high-dielectric-permittivity fillers, an electric field can be applied during the curing process which helps the particles to align in a preferred direction. To be specific, recent experimental evidences show that these particles form a dispersed anisotropy rather than a perfect transverse anisotropic structure. The polymer curing process is a complex (visco-) elastic phenomenon where a liquid polymer gradually transforms into a solid macromolecular structure due to cross-linking of the initial solution of short polymer chains. This phase transition comes along with an increase in the material stiffness and a volume shrinkage. In this paper we present a phenomenologically inspired large strain framework for simulating the curing process of particle-filled electro-active polymers with a dispersion-type anisotropy that can work under the influence of an electro-mechanically coupled load. The application of the proposed approach is demonstrated with some numerical examples. These examples illustrate that the model can predict common features in particle-filled dispersed electro-active polymers undergoing curing processes in the presence of an electro-mechanically coupled load.

This is a preview of subscription content, log in to check access.


  1. 1.

    Adolf, D.B., Martin, J.E., Chambers, R.S., Burchett, S.N., Guess, T.N.: Stresses during thermoset cure. J. Mater. Res. 13, 530–550 (1998)

    ADS  Google Scholar 

  2. 2.

    Alastrue, V., Martinez, M., Doblare, M., Menzel, M.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling. Int. J. Mech. Phys. Solids 57, 178–203 (2009)

    ADS  MATH  Google Scholar 

  3. 3.

    Ask, A., Menzel, A., Ristinma, M.: Phenomenological modeling of viscous electrostrictive polymers. Int. J. Nonlinear Mech. 47(2), 156–165 (2012)

    ADS  Google Scholar 

  4. 4.

    Bazant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Büschel, A., Klinkel, S., Wagner, W.: Dielectric elastomers—numerical modeling of nonlinear visco-elasticity. Int. J. Numer. Methods Eng. 93, 834–856 (2013)

    MATH  Google Scholar 

  6. 6.

    Bustamante, B.: Transversely isotropic nonlinear electro-active elastomers. Acta Mech. 206(3–4), 237–259 (2009)

    MATH  Google Scholar 

  7. 7.

    Carpi, F., Rossi, D.D.: Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 12, 835–843 (2005)

    Google Scholar 

  8. 8.

    Carpi, F., Gallone, G., Galantini, F., Rossi, D.D.: Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties. Adv. Funct. Mater. 18, 235–241 (2008)

    Google Scholar 

  9. 9.

    Cortes, D.H., Lake, S.P., Kadlowec, J.A., Soslowsky, L.J., Elliot, D.M.: Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model Mechanobiol. 9, 651–658 (2010)

    Google Scholar 

  10. 10.

    Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174(3), 167–183 (2005)

    MATH  Google Scholar 

  11. 11.

    Dorfmann, L., Ogden, R.W.: Nonlinear electroelasticity: material properties, continuum theory and applications. Proc. R. Soc. A 473, 20170311 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. 12.

    Diaconu, I., Dorohoi, D.O., Ciobanu, C.: Eletromechanical response of polyurethane films with different thickness. Roman. J. Phys. 53(1–2), 91–97 (2008)

    Google Scholar 

  13. 13.

    Dang, Z.M., Yuan, J.K., Zha, J.W., Zhou, T., Li, S.T., Hu, G.H.: Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)

    Google Scholar 

  14. 14.

    Dal, H., Zopf, C., Kaliske, M.: Micro-sphere based viscoplastic constitutive model for uncured green rubber. Int. J. Solids Struct. 132–133, 201–217 (2018)

    Google Scholar 

  15. 15.

    Dal, H., Kaliske, M.: A micro-continuum-mechanical material model for failure of rubber-like materials: application to ageing-induced fracturing. Int. J. Mech. Phys. Solids 57(8), 1340–1356 (2009)

    ADS  MATH  Google Scholar 

  16. 16.

    Dal, H., Cansiz, B., Miehe, C.: A three-scale compressible microsphere model for hyperelastic materials. Int. J. Numer. Methods Eng. 116, 412–433 (2018)

    MathSciNet  Google Scholar 

  17. 17.

    Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Int. J. Numer. Methods Eng. 81, 189–206 (2010)

    MATH  Google Scholar 

  18. 18.

    Fliege, J., Maier, U.: The distribution of points on the sphere and corresponding cubature formulae. IMA J. Numer. Anal. 19(2), 317–334 (1999)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Gallone, G., Carpi, F., Rossi, D.D., Levita, G., Marchetti, A.: Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-leads titanate. Mater. Sci. Eng. C 27, 110–1162 (2007)

    Google Scholar 

  20. 20.

    Gillen, K.T.: Effect of cross-links which occur during continuous chemical stress-relaxation. Macromolecules 21, 442–446 (1988)

    ADS  Google Scholar 

  21. 21.

    Hossain, M., Possart, G., Steinmann, P.: A small-strain model to simulate the curing of thermosets. Comput. Mech. 43, 769–779 (2009a)

    MATH  Google Scholar 

  22. 22.

    Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44(5), 621–630 (2009b)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part II: viscoelasticity and shrinkage. Comput. Mech. 46(3), 363–375 (2010)

    MATH  Google Scholar 

  24. 24.

    Hossain, M., Steinmann, P.: Degree of cure-dependent modelling for polymer curing processes at small-strain. Part I: consistent reformulation. Comput. Mech. 53(4), 777–787 (2014)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Hossain, M., Steinmann, P.: Continuum physics of materials with time-dependent properties: reviewing the case of polymer curing. Adv. Appl. Mech. 48, 141–259 (2015)

    Google Scholar 

  26. 26.

    Hossain, M., Saxena, P., Steinmann, P.: Modelling the mechanical aspects of the curing process of magneto-sensitive elastomeric materials. Int. J. Solids Struct. 58, 257–269 (2015)

    Google Scholar 

  27. 27.

    Hossain, M., Saxena, P., Steinmann, P.: Modelling the curing process in magneto-sensitive materials: rate-dependence and shrinkage. Int. J. Nonlinear Mech. 74, 108–121 (2015)

    ADS  Google Scholar 

  28. 28.

    Hossain, M., Chatzigeorgiou, G., Meraghni, F., Steinmann, P.: A multi-scale approach to model the curing process in magneto-sensitive polymeric materials. Int. J. Solids Struct. 69–70, 34–44 (2015)

    Google Scholar 

  29. 29.

    Hossain, M., Vu, D.K., Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mater. Sci. 59, 65–74 (2012)

    Google Scholar 

  30. 30.

    Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch. Appl. Mech. 85(4), 523–537 (2014)

    Google Scholar 

  31. 31.

    Hossain, M., Steinmann, P.: Modelling electro-active polymers with a dispersion-type anisotropy. Smart Mater. Struct. 27(2), 1–17 (2018)

    Google Scholar 

  32. 32.

    Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.W.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solids 61, 1241–1264 (2013)

    ADS  MathSciNet  Google Scholar 

  33. 33.

    Horgan, C.O., Saccomandi, G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Itskov, M.: On the accuracy of numerical integration over the unit sphere applied to full network models. Comput. Mech. 57(5), 859–865 (2016)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Itskov, M., Khiem, V.N., Waluyo, S.: Electroelasticity of dielectric elastomers based on molecular chain statistics. Math. Mech. Solids (2018).

    Article  Google Scholar 

  36. 36.

    Johlitz, M., Steeb, H., Diebels, S., Chatzouridou, A., Batal, J., Possart, W.: Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. J. Mater. Sci. 42, 9894–9904 (2007)

    ADS  Google Scholar 

  37. 37.

    Koh, S.J.A., Keplinger, C., Li, T., Bauer, S., Suo, Z.: Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans Mechatron 16(1), 33–41 (2011)

    Google Scholar 

  38. 38.

    Kashani, M.R., Javadi, S., Gharavi, N.: Dielectric properties of silicone rubber-titanium dioxide composites prepared by dielectrophoretic assembly of filler particles. Smart Mater. Struct. 19, 1–7 (2010)

    Google Scholar 

  39. 39.

    Kussmaul, B., Risse, S., Kofod, G., Wache, R., Wegener, M., McCarthy, D.N., Krueger, H., Gerhard, R.: Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Adv. Funct. Mater. 21, 4589–4594 (2011)

    Google Scholar 

  40. 40.

    Keip, M.A., Steinmann, P., Schröder, J.: Two-scale computational homogenization of electro-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 278, 62–79 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  41. 41.

    Kiasat, M.: Curing Shrinkage and Residual Stresses in Viscoelastic Thermosetting Resins and Composites. TU Delft, Delft (2000). PhD Thesis

    Google Scholar 

  42. 42.

    Landgraf, R., Scherzer, R., Rudolph, M., Ihlemann, J.: Modelling and simulation of adhesive curing processes in bonded piezo metal composites. Comput. Mech. 54(2), 547–565 (2014)

    MATH  Google Scholar 

  43. 43.

    Landgraf, R.: Modeling and simulation of the curing of polymeric materials. Ph.D. dissertation, TU Chemnitz, Germany (2015)

  44. 44.

    Lion, A., Höfer, P.: On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59, 59–89 (2007)

    MATH  Google Scholar 

  45. 45.

    Liu, B., Shaw, M.T.: Electrorheology of filled silicone elastomers. J. Rheol. 45, 641–657 (2011)

    ADS  Google Scholar 

  46. 46.

    Mehnert, M., Hossain, M., Steinmann, P.: On nonlinear thermo-electro-elasticity. Proc. R. Soc. A 472(2190), 20160170 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  47. 47.

    Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)

    Google Scholar 

  48. 48.

    Molberg, M., Crespy, D., Rupper, P., Nesch, F., Manson, J.A.E., Loewe, C., Opris, D.M.: High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20, 3280–3291 (2010)

    Google Scholar 

  49. 49.

    Miehe, C., Göktepe, S., Lulei, F.: A micro–macro approach to rubber-like materials: part I, the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  50. 50.

    Mahnken, R.: Thermodynamic consistent modeling of polymer curing coupled to viscoelasticity at large strains. Int. J. Solids Struct. 50(13), 2003–2021 (2013)

    Google Scholar 

  51. 51.

    Nateghi, A., Dal, H., Keip, M.A., Miehe, C.: An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers. Contin. Mech. Thermodyn. 30(3), 485–507 (2018)

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Opris, D.M., Molberg, M., Walder, C., Ko, Y.S., Fischer, B., Nuesch, F.A.: New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil. Adv. Funct. Mater. 21, 3531–3539 (2011)

    Google Scholar 

  53. 53.

    Oliva-Aviles, A.I., Aviles, F., Sosa, V.: Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49, 2989–2997 (2011)

    Google Scholar 

  54. 54.

    Pandolfi, A., Vasta, M.: Fiber distributed hyper elastic modelling of biological tissues. Mech. Mater. 44, 151–162 (2012)

    Google Scholar 

  55. 55.

    Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010)

    Google Scholar 

  56. 56.

    Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    MATH  Google Scholar 

  57. 57.

    Risse, S., Kussmaul, B., Krueger, H., Kofod, G.: Synergistic improvement of actuation properties with compatibilized high permittivity filler. Adv. Funct. Mater. 22, 3958–3962 (2012)

    Google Scholar 

  58. 58.

    Risse, S., Kussmaul, B., Krueger, H., Kofod, G.: A versatile method for enhancement of electromechanical sensitivity of silicone elastomers. RSC Adv. 2, 9029–9035 (2012)

    Google Scholar 

  59. 59.

    Romasanta, L.J., Lopez-Manchado, M.A., Verdejo, R.: Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Res. 51, 188–211 (2014)

    Google Scholar 

  60. 60.

    Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability of Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)

    ADS  MATH  Google Scholar 

  61. 61.

    Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic, New York (1971)

    Google Scholar 

  62. 62.

    Saxena, P., Vu, D.K., Steinmann, P.: On rate-dependent dissipation effects in electro-elasticity. Int. J. Nonlinear Mech. 62, 1–11 (2014)

    ADS  Google Scholar 

  63. 63.

    Saxena, P., Pelteret, J.-P., Steinmann, P.: Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur. J. Mech. A Solids 50, 132–151 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  64. 64.

    Skacel, P., Bursa, J.: Comparison of constitutive models of arterial layers with distributed collagen fibre orientations. Acta Bioeng. Biomech. 16(3), 47–58 (2014)

    Google Scholar 

  65. 65.

    Tomer, V., Randall, C.A.: High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104, 074106/1–074106/7 (2008)

    ADS  Google Scholar 

  66. 66.

    Thylander, S.: Microsphere-based modeling of electro-active polymers. Ph.D. dissertation, Lund University, Sweden (2016)

  67. 67.

    Vogel, F.: On the modeling and computation of electro- and magneto-active polymers. Ph.D. dissertation, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (2014)

  68. 68.

    Vu, D.K., Steinmann, P.: Numerical modeling of non-linear electroelasticity. Int. J. Numer. Methods Eng. 70, 685–704 (2007)

    MATH  Google Scholar 

  69. 69.

    Wissler, M., Mazza, E.: Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuators A 134, 494–504 (2007)

    Google Scholar 

  70. 70.

    Yang, Ta-I, Kofinas, P.: Dielectric properties of polymer nanoparticle composites. Polymer 48, 791–798 (2009)

    Google Scholar 

  71. 71.

    Womersley, R.S.: Interpolation and cubature on the sphere—UNSW Sydney. Accessed 11 June 2017

Download references

Author information



Corresponding author

Correspondence to Mokarram Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Johlitz, Lucien Laiarinandrasana, Yann Marco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M. Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy. Continuum Mech. Thermodyn. 32, 351–367 (2020).

Download citation


  • Electro-active polymers
  • Polymer curing
  • Electro-mechanically coupled problem
  • Dispersion anisotropy
  • Electro-elasticity
  • Curing shrinkage