Skip to main content
Log in

On the ageing behaviour of NBR: chemomechanical experiments, modelling and simulation of tension set

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Rubber components produced from nitrile butadiene rubber (NBR) are changing their material properties due to environmental influences. This is caused by irreversible changes occurring in the elastomer network which is known as chemical ageing. In this paper, ageing behaviour of NBR is investigated and modelled under the influence of different surrounding media as air and oil. Based on the previous works, in which chemical ageing was also modelled, a continuum mechanical approach is introduced here, whereby the rubber viscoelasticity is taken into account. Simulations using FEM are then carried out under different chemical and mechanical boundary conditions, and the proposed modelling approach is validated by means of tension set measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, R., Tobolsky, A., Hanson, E.: The theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanizates. J. Appl. Phys. 17, 352–361 (1946)

    Article  ADS  Google Scholar 

  2. Bathe, K.J.: Finite Elemente Procedures, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  3. Blum, G., Shelton, J., Winn, H.: Rubber oxidation and ageing studies. Ind. Eng. Chem. 43, 464–471 (1951)

    Article  Google Scholar 

  4. Budrugeac, P., Segal, E., Ciutacu, S.: Thermooxidative degradation of nitrile-butadiene rubber. J. Therm. Anal. 37, 1179–1191 (1991)

    Article  Google Scholar 

  5. Celina, M., Wise, J., Ottesen, D., Gillen, K., Clough, R.: Oxidation profiles of thermally aged nitrile rubber. Polym Degrad Stab 60, 493–504 (1998)

    Article  Google Scholar 

  6. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  Google Scholar 

  7. Dippel, B.: Experimentelle Charakterisierung, Modellierung und FE-Berechnung thermomechanischer Kopplungen am Beispiel eines rußgefüllten Naturkautschuks. Ph.D. thesis, Universität der Bundeswehr München (2015)

  8. Ehrenstein, G., Pongratz, S.: Beständigkeit von Kunststoffen. Carl Hanser Verlag, Munich (2007)

    Book  Google Scholar 

  9. Flory, P.J.: Thermodynamic relations for hight elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  10. Gillen, K.T., Clough, R.L., Wise, J.: Prediction of Elastomer Lifetimes from Accelerated Thermal-Aging Experiments. ACS Publications, Washington (1996)

    Book  Google Scholar 

  11. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44, 621–630 (2009)

    Article  MathSciNet  Google Scholar 

  13. Johlitz, M.: On the representation of ageing phenomena. J. Adhes 88, 620–648 (2012)

    Article  Google Scholar 

  14. Johlitz, M., Diercks, N., Lion, A.: Thermo-oxidative aging of elastomers: a modelling approach based on a finite strain theory. Int. J. Plast. 63, 138–151 (2014)

    Article  Google Scholar 

  15. Johlitz, M., Dippel, B., Lion, A.: Dissipative heating of elastomers: a new modelling approach based on finite and coupled thermomechanics. Contin. Mech. Thermodyn. 28, 1111–1125 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Johlitz, M., Lion, A.: Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics. Contin. Mech. Thermodyn. 25, 605–624 (2012). https://doi.org/10.1007/s00161-012-0255-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Johlitz, M., Retka, J., Lion, A.: Chemical ageing of elastomers: experiments and modelling. In: Jerrams, S., Murphy, N. (eds.) Constitutive Models for Rubber, vol. VII, pp. 113–118. Taylor & Francis, Boca Raton (2011)

    Chapter  Google Scholar 

  18. Lee, E.H.: Elastic–plastic deformation at finite strain. J. Appl. Mech. 36, 1–6 (1969)

    Article  ADS  Google Scholar 

  19. Lion, A.: Thermomechanik von Elastomeren. Berichte des Instituts für Mechanik der Universität Kassel (Bericht 1/2000) (2000)

  20. Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51, 729–739 (2014)

    Article  Google Scholar 

  21. Lion, A., Johlitz, M.: On the representation of chemical ageing of rubber in continuum mechanics. Int. J. Solids Struct. 49, 1227–1240 (2012)

    Article  Google Scholar 

  22. Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  23. Santoso, M., Torrejon, Y.N., Giese, U., Schuster, R.H.: Untersuchung thermischer und oxidativer alterungsprozesse von elastomeren; verbrauch von p-phenylendiaminen mit der chemilumineszenz. Kaut. Gummi Kunstst. 61, 306–311 (2008)

    Google Scholar 

  24. Scheffer, T., Seibert, H., Diebels, S.: Optimisation of a pretreatment method to reach the basic elasticity of filled rubber materials. Arch. Appl. Mech. 83, 1659–1678 (2013)

    Article  ADS  Google Scholar 

  25. Sedlan, K.: Viskoelastisches Materialverhalten von Elastomerwerkstoffen, Experimentelle Untersuchung und Modellbildung. Dissertation, Berichte des Instituts für Mechanik (2/2001), Universität Gesamthochschule Kassel (2001)

  26. Shaw, J., Jones, S., Wineman, A.: Chemorheological response of elastomers at elevated temperatures: experiments and simulations. J. Mech. Phys. Solids 53, 2758–2793 (2005)

    Article  ADS  Google Scholar 

  27. Simo, J.C., Taylor, R.L.: Penalty function formulations for incompressible nonlinear elastostatics. Comput. Methods Appl. Mech. Eng. 35, 107–118 (1982)

    Article  ADS  Google Scholar 

  28. Sussman, T., Bathe, K.J.: A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26, 357–409 (1987)

    Article  Google Scholar 

  29. Tobolsky, A.V.: Mechanische Eigenschaften und Struktur von Polymeren. Berliner Union, Stuttgart (1967)

    Google Scholar 

  30. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  31. Wise, J., Gillen, K., Clough, R.: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers. Polym. Degrad. Stab. 49, 403–418 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the project by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Number JO 818/3-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Musil.

Additional information

Communicated by Johlitz, Laiarinandrasana and Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musil, B., Johlitz, M. & Lion, A. On the ageing behaviour of NBR: chemomechanical experiments, modelling and simulation of tension set. Continuum Mech. Thermodyn. 32, 369–385 (2020). https://doi.org/10.1007/s00161-018-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0728-5

Keywords

Navigation