Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling

Abstract

To investigate the microstructure-dependent relationships in polycrystalline Ni-based superalloys (Haynes 282 and Inconel 718) deformed in the elastoplastic regime, the lattice strain evolution along various macroscopic directions and along various crystallographic directions is monitored via in situ neutron diffraction during uniaxial tensile loading. In addition, a crystal plasticity-based finite element model is set up to describe the micromechanical behaviour of a unit cell within a uniaxially loaded polycrystalline aggregate. Appropriate postprocessing of the (micromechanical) field quantities allows to simulate the diffraction experiment and thus to directly compare and to discuss experimental and modelling results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Wagner, J., Hofmann, M., Wimpory, R., Krempaszky, C., Stockinger, M.: Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis. Mater. Sci. Eng. A 618, 271–279 (2014)

    Article  Google Scholar 

  2. 2.

    Pike, L.: HAYNES® 282™alloy: a new wrought superalloy designed for improved creep strength and fabricability. In: ASME Turbo Expo 2006: Power for Land, Sea, and Air, pp. 1031–1039 (2006)

  3. 3.

    Wagner, J.N., Hofmann, M., Van Petegem, S., Krempaszky, C., Hoelzel, M., Stockinger, M.: Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys. Mater. Sci. Eng. A 662, 303–307 (2016)

    Article  Google Scholar 

  4. 4.

    Abdolvand, H., Daymond, M.R.: Internal strain and texture development during twinning: comparing neutron diffraction measurements with crystal plasticity finite-element approaches. Acta Mater. 60, 2240–2248 (2012)

    Article  Google Scholar 

  5. 5.

    Song, X., Zhang, S.Y., Dini, D., Korsunsky, A.M.: Finite element modelling and diffraction measurement of elastic strains during tensile deformation of HCP polycrystals. Comput. Mater. Sci. 44, 131–137 (2008)

    Article  Google Scholar 

  6. 6.

    Delannay, L., Jacques, P.J., Kalidindi, S.R.: Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int. J. Plast. 22, 1879–1898 (2006)

    Article  MATH  Google Scholar 

  7. 7.

    Woo, W., Em, V., Kim, E.-Y., Han, S., Han, Y., Choi, S.-H.: Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 60, 6972–6981 (2012)

    Article  Google Scholar 

  8. 8.

    Clausen, B., Tomé, C., Brown, D., Agnew, S.: Reorientation and stress relaxation due to twinning: modeling and experimental characterization for Mg. Acta Mater. 56, 2456–2468 (2008)

    Article  Google Scholar 

  9. 9.

    Hoelzel, M., Senyshyn, A., Juenke, N., Boysen, H., Schmahl, W., Fuess, H.: High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 667, 32–37 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  11. 11.

    Rodriguez-Carvajal, J.: FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, vol. 127 (1990)

  12. 12.

    Howard, C., Kisi, E.: Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. J. Appl. Crystallogr. 32, 624–633 (1999)

    Article  Google Scholar 

  13. 13.

    He, B.B.: Two-Dimensional X-Ray Diffraction. Wiley, New York (2018)

    Google Scholar 

  14. 14.

    Hoelzel, M., Gan, W., Hofmann, M., Randau, C., Seidl, G., Jüttner, P., Schmahl, W.W.: Rotatable multifunctional load frames for neutron diffractometers at FRM II-design, specifications and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 711, 101–105 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    Hutchings, M.T., Withers, P.J., Holden, T.M., Lorentzen, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press, Boca Raton (2005)

    Google Scholar 

  16. 16.

    Wu, L., Agnew, S., Brown, D., Stoica, G., Clausen, B., Jain, A., Fielden, D., Liaw, P.: Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater. 56, 3699–3707 (2008)

    Article  Google Scholar 

  17. 17.

    Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    ADS  Article  MATH  Google Scholar 

  18. 18.

    Werner, E., Wesenjak, R., Fillafer, A., Meier, F., Krempaszky, C.: Microstructure-based modelling of multiphase materials and complex structures. Contin. Mech. Thermodyn. 28, 1325–1346 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  20. 20.

    Roters, F.: Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Technical Report Fachgruppe für Materialwissenschaft und Werkstofftechnik (2011)

  21. 21.

    Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D., Diehl, M., Raabe, D.: DAMASK: the Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Proc. IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  22. 22.

    Meier, F., Schwarz, C., Werner, E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014)

    Article  Google Scholar 

  23. 23.

    Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., Wong, S.L., Ma, D., Jia, N., Kok, P.J.J., Fujita, N., Ebrahimi, A., Hochrainer, T., Grilli, N., Janssens, K.G.F., Stricker, M., Weygand, D., Meier, F., Werner, E., Fabritius, H.-O., Nikolov, S., Friák, M., Raabe, D.: DAMASK: the Düsseldorf advanced material simulation Kit for modelling multi-physics crystal plasticity, damage, and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci (2018) (in press)

  24. 24.

    Kanrar, A., Ghosh, U.: The elastic stiffness coefficients of nickel–iron single-crystal alloys at room temperature. J. Appl. Phys. 52, 5851–5852 (1981)

    ADS  Article  Google Scholar 

  25. 25.

    Wallow, F., Neite, G., Schröer, W., Nembach, E.: Stiffness constants, dislocation line energies, and tensions of Ni3Al and of the \(\gamma ^{\prime }\)-phases of NIMONIC 105 and of NIMONIC PE16. Phys. Status Solidi (a) 99, 483–490 (1987)

    ADS  Article  Google Scholar 

  26. 26.

    Jablonski, P.D., Cowen, C.J., Hawk, J.A.: Effects of Al and Ti on Haynes 282 with fixed gamma prime content. In" Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives, pp 617–628 (2012)

  27. 27.

    Grant, B.M., Francis, E.M., da Fonseca, J.Q., Daymond, M.R., Preuss, M.: Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta Mater. 60, 6829–6841 (2012)

    Article  Google Scholar 

  28. 28.

    Fillafer, A., Werner, E., Krempaszky, C.: On phase transformation induced effects controlling the initial flow behavior of ferritic-martensitic dual-phase steels. Mater. Sci. Eng. A 708, 556–562 (2017)

    Article  Google Scholar 

  29. 29.

    Merrick, H.: The low cycle fatigue of three wrought nickel-base alloys. Metall. Trans. 5, 891–897 (1974)

    Article  Google Scholar 

  30. 30.

    Bouaziz, O., Guelton, N.: Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 319, 246–249 (2001)

    Article  Google Scholar 

  31. 31.

    Han, G., Jones, I., Smallman, R.: Direct evidence for Suzuki segregation and Cottrell pinning in MP159 superalloy obtained by FEG (S) TEM/EDX. Acta Mater. 51, 2731–2742 (2003)

    Article  Google Scholar 

  32. 32.

    Titus, M.S., Mottura, A., Viswanathan, G.B., Suzuki, A., Mills, M.J., Pollock, T.M.: High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing co-base superalloys. Acta Mater. 89, 423–437 (2015)

    Article  Google Scholar 

  33. 33.

    Barba, D., Smith, T., Miao, J., Mills, M., Reed, R.: Segregation-assisted plasticity in Ni-based superalloys. Metall. Mater. Trans. A 49, 1–13 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the DFG for funding this research within projects KR 3687/3-1, HO 3322/3-1 and WA 3676/1-1. In addition, the authors thank the German neutron source FRM II for providing beam time at instruments STRESS-SPEC and SPODI and the instrument scientist M. Hölzel for his support during and after the powder diffraction measurement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonas von Kobylinski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Kobylinski, J., Lawitzki, R., Hofmann, M. et al. Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling. Continuum Mech. Thermodyn. 31, 691–702 (2019). https://doi.org/10.1007/s00161-018-0720-0

Download citation

Keywords

  • Neutron diffraction
  • Crystal plasticity
  • Nickel-based superalloy
  • In situ tension test