The integral theorem of generalized virial in the relativistic uniform model

Abstract

In the relativistic uniform model for continuous medium, the integral theorem of generalized virial is derived, in which generalized momenta are used as particles’ momenta. This allows us to find exact formulas for the radial component of the velocity of typical particles of the system and for their root-mean-square speed, without using the notion of temperature. The relation between the theorem and the cosmological constant, characterizing the physical system under consideration, is shown. The difference is explained between the kinetic energy and the energy of motion, the value of which is equal to half the sum of the Lagrangian and the Hamiltonian. This difference is due to the fact that the proper fields of each particle have mass–energy, which makes an additional contribution into the kinetic energy. As a result, the total energy of motion of particles and fields is obtained.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Boston (1980)

    Google Scholar 

  2. 2.

    Ganghoffer, J., Rahouadj, R.: On the generalized virial theorem for systems with variable mass. Continuum Mech. Thermodyn. 28, 443–463 (2016). https://doi.org/10.1007/s00161-015-0444-3

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Fock, V.: Bemerkung zum Virialsatz. Zeitschrift für Physik A. 63(11), 855–858 (1930). https://doi.org/10.1007/BF01339281

    ADS  Article  MATH  Google Scholar 

  4. 4.

    Parker, E.N.: Tensor virial equations. Phys. Rev. 96(6), 1686–1689 (1954). https://doi.org/10.1103/PhysRev. 96.1686

  5. 5.

    Fedosin, S.G.: The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept. Contin. Mech. Thermodyn. 29(2), 361–371 (2016). https://doi.org/10.1007/s00161-016-0536-8

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Landau, L.D., Lifschitz, E.M.: Mechanics. Course of Theoretical Physics. Vol. 1 (3rd ed.). London: Pergamon. ISBN 0-08-021022-8 (1976)

  7. 7.

    Fedosin, S.G.: About the cosmological constant, acceleration field, pressure field and energy. Jordan J. Phys. 9(1), 1–30 (2016). https://doi.org/10.5281/zenodo.889304

    ADS  Google Scholar 

  8. 8.

    Fedosin, S.G.: The procedure of finding the stress-energy tensor and vector field equations of any form. Adv. Stud. Theor. Phys. 8, 771–779 (2014). https://doi.org/10.12988/astp.2014.47101

    Article  Google Scholar 

  9. 9.

    Fedosin, S.G.: The integral energy–momentum 4-vector and analysis of 4/3 problem based on the pressure field and acceleration field. Am. J. Mod. Phys. 3(4), 152–167 (2014). https://doi.org/10.11648/j.ajmp.20140304.12

    Article  Google Scholar 

  10. 10.

    Fedosin, S.G.: Relativistic energy and mass in the weak field limit. Jordan J. Phys. 8(1), 1–16 (2015). https://doi.org/10.5281/zenodo.889210

    Google Scholar 

  11. 11.

    Fedosin, S.G.: 4/3 problem for the gravitational field. Adv. Phys. Theor. Appl. 23, 19–25 (2013). https://doi.org/10.5281/zenodo.889383

    Google Scholar 

  12. 12.

    Fedosin, S.G.: Estimation of the physical parameters of planets and stars in the gravitational equilibrium model. Canad. J. Phys. 94(4), 370–379 (2016). https://doi.org/10.1139/cjp-2015-0593

    ADS  Article  Google Scholar 

  13. 13.

    Reif, F.: Fundamentals of Statistical and Thermal Physics. Long Grove, IL: Waveland Press, Inc. ISBN 1-57766-612-7 (2009)

  14. 14.

    Fedosin, S.G.: The Hamiltonian in covariant theory of gravitation. Adv. Nat. Sci. 5(4), 55–75 (2012). https://doi.org/10.3968/j.ans.1715787020120504.2023

    Google Scholar 

  15. 15.

    Dirac P.A.M.: General Theory of Relativity. Princeton University Press, quick presentation of the bare essentials of GTR. ISBN 0-691-01146-X (1975)

  16. 16.

    Denisov, V.I., Logunov, A.A.: The inertial mass defined in the general theory of relativity has no physical meaning. Theoretical and Mathematical Physics 51(2), 421–426 (1982). https://doi.org/10.1007/BF01036205

    ADS  Article  MATH  Google Scholar 

  17. 17.

    Khrapko, R.I.: The truth about the energy–momentum tensor and pseudotensor. ISSN 0202-2893, Gravitation and Cosmology, 20(4), 264–273 (2014). Pleiades Publishing, Ltd., 2014. https://doi.org/10.1134/S0202289314040082

  18. 18.

    Snider, R.F.: Conversion between kinetic energy and potential energy in the classical nonlocal Boltzmann equation. J. Stat. Phys. 80, 1085–1117 (1995). https://doi.org/10.1007/BF02179865

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Fedosin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedosin, S.G. The integral theorem of generalized virial in the relativistic uniform model. Continuum Mech. Thermodyn. 31, 627–638 (2019). https://doi.org/10.1007/s00161-018-0715-x

Download citation

Keywords

  • Generalized virial theorem
  • Relativistic uniform model
  • Cosmological constant
  • Energy of motion
  • Kinetic energy