Pantographic metamaterials: an example of mathematically driven design and of its technological challenges


In this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those equations that specify a desired behavior. Addressing this problem has led to the synthesis of second gradient materials. In the second stage, it has been necessary to develop numerical integration schemes and the corresponding codes for solving, in physically relevant cases, the chosen equations. Finally, it has been necessary to physically construct the theoretically synthesized microstructures. This has been possible by means of the recent developments in rapid prototyping technologies, which allow for the fabrication of some complex (micro)structures considered, up to now, to be simply some mathematical dreams. We show here a panorama of the results of our efforts (1) in designing pantographic metamaterials, (2) in exploiting the modern technology of rapid prototyping, and (3) in the mechanical testing of many real prototypes. Among the key findings that have been obtained, there are the following ones: pantographic metamaterials (1) undergo very large deformations while remaining in the elastic regime, (2) are very tough in resisting to damage phenomena, (3) exhibit robust macroscopic mechanical behavior with respect to minor changes in their microstructure and micromechanical properties, (4) have superior strength to weight ratio, (5) have predictable damage behavior, and (6) possess physical properties that are critically dictated by their geometry at the microlevel.

This is a preview of subscription content, log in to check access.


  1. 1.

    dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  2. 2.

    Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Russo, L.: The Forgotten Revolution: How Science Was Born in 300 BC and Why It Had to Be Reborn. Springer, Berlin (2013)

    Google Scholar 

  6. 6.

    Stigler, S.M.: Stigler’s law of eponymy. Trans. N. Y. Acad. Sci. 39(1 Series II), 147–157 (1980)

    Article  Google Scholar 

  7. 7.

    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. angew. Math. Phys. 66, 3473–3498 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 23 (2016)

    Article  Google Scholar 

  14. 14.

    dell Isola, F., Seppecher, P., Della Corte, A.: The postulations á la d alembert and á la cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proceedings of the Royal Society A, Volume 471, p. 20150415. The Royal Society (2015)

  15. 15.

    Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM 89(4), 242–256 (2009)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    MATH  Article  Google Scholar 

  20. 20.

    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1–2), 139–156 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    de Saint-Venant, M.: Mémoire sur la torsion des prismes: avec des considérations sur leur flexion ainsi que sur l’équilibre intérieur des solides élastiques en général: et des formules pratiques pour le calcul de leur résistance à divers efforts s’ exerçant simultanément. Imprimerie nationale (1856)

  22. 22.

    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Dillon, O.W., Perzyna, P.: Gradient theory of materials with memory and internal changes. Arch. Mech. 24(5–6), 727–747 (1972)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices (2017) . \(<\)hal-01672898\(>\)

  25. 25.

    Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Open Sci. 4(10), 171153 (2017)

    Google Scholar 

  26. 26.

    Everstine, G.C., Pipkin, A.C.: Boundary layers in fiber-reinforced materials. J. Appl. Mech. 40, 518–522 (1973)

    ADS  MATH  Article  Google Scholar 

  27. 27.

    Hilgers, M.G., Pipkin, A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45, 57–75 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Hilgers, M.G., Pipkin, A.C.: Energy-minimizing deformations of elastic sheets with bending stiffness. J. Elast. 31, 125–139 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Hilgers, M.G., Pipkin, A.C.: Bending energy of highly elastic membranes ii. Q. Appl. Math. 54, 307–316 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Hu, M.Z., Kolsky, H., Pipkin, A.C.: Bending theory for fiber-reinforced beams. J. Compos. Mater. 19, 235–249 (1985)

    ADS  Article  Google Scholar 

  31. 31.

    Pipkin, A.C.: Generalized plane deformations of ideal fiber-reinforced materials. Q. Appl. Math. 32, 253–263 (1974)

    MATH  Article  Google Scholar 

  32. 32.

    Pipkin, A.C.: Energy changes in ideal fiber-reinforced composites. Q. Appl. Math. 35, 455–463 (1978)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Pipkin, A.C.: Some developments in the theory of inextensible networks. Q. Appl. Math. 38, 343–355 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    dell’Isola, F., d’Agostino, M.V., Madeo, A., Boisse, P., Steigmann, D.: Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: the case of standard bias extension test. J. Elast. 122(2), 131–155 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Z. angew. Math. Phys. 67(5), 114 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Rivlin, R.S.: Plane strain of a net formed by inextensible cords. In: Collected Papers of RS Rivlin, pp. 511–534. Springer (1997)

  37. 37.

    Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextesible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids, p. 1081286516651324 (2016)

  38. 38.

    Cuomo, M., Dell’Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. B Eng. 115, 423–448 (2017)

    Article  Google Scholar 

  39. 39.

    Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. angew. Math. Phys. 67(3), 1–23 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Z. angew. Math. Phys. 67(4), 95 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. angew. Math. Phys. 67, 28 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions (2017).

  45. 45.

    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z. angew. Math. Phys. 67(5), 121 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  48. 48.

    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A, p. 21 (2017).

  49. 49.

    Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69, 195–206 (2015)

    Article  Google Scholar 

  50. 50.

    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro–macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Placidi, L., Andreaus, U., Corte, A.D., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. angew. Math. Phys. 66(6), 3699–3725 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer (2017)

  53. 53.

    Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM 96(11), 1268–1279 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2d lattices: a numerical analysis on static response and wave propagation. Proc. Est. Acad. Sci. 64, 219–225 (2015)

    Article  Google Scholar 

  55. 55.

    dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets. Int. J. Non Linear Mech. 80, 200–208 (2016)

    ADS  Article  Google Scholar 

  56. 56.

    Madeo, A., Della Corte, A., Greco, L., Neff, P.: Wave propagation in pantographic 2d lattices with internal discontinuities. arXiv preprint arXiv:1412.3926 (2014)

  57. 57.

    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  58. 58.

    Spagnuolo, M., Barcz, K., Pfaff, A., Dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  59. 59.

    Ganzosch, G., dell’Isola, F., Turco, E., Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)

    Article  Google Scholar 

  60. 60.

    Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  61. 61.

    Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  62. 62.

    Hild, F., Roux, S.: Digital Image Correlation, pp. 183–228. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  63. 63.

    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced piola-hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments (submitted for publication) (2018)

  64. 64.

    Tomičevć, Z., Hild, F., Roux, S.: Mechanics-aided digital image correlation. J. Strain Anal. Eng. Des. 48(5), 330–343 (2013)

    Article  Google Scholar 

  65. 65.

    Hild, F., Roux, S., Gras, R., Guerrero, N., Marante, M.E., Flórez-López, J.: Displacement measurement technique for beam kinematics. Opt. Lasers Eng. 47(3), 495–503 (2009)

    Article  Google Scholar 

  66. 66.

    Leclerc, H., Périé, J.-N., Roux, S., Hild, F.: Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz, A., Philips, W. (eds.) International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, Volume LNCS 5496, pp. 161–171. Springer, Berlin (2009)

  67. 67.

    Lindner, D., Mathieu, F., Hild, F., Allix, O., Ha Minh, C., Paulien-Camy, O.: On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated DIC. J. Appl. Mech. 82(7), 071014 (2015)

    ADS  Article  Google Scholar 

Download references


This work was supported by a grant from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information



Corresponding author

Correspondence to Emilio Barchiesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dell’Isola, F., Seppecher, P., Alibert, J.J. et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31, 851–884 (2019).

Download citation


  • Pantographic fabrics
  • Metamaterials
  • Scientific design
  • Higher gradient materials