Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply

Abstract

We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Rieder, Z., Lebowitz, J., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967)

    ADS  Article  Google Scholar 

  2. 2.

    Bonetto, F., Lebowitz, J., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000. World Scientific, Singapore (2000)

    Google Scholar 

  3. 3.

    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43(3), 271 (1998)

    ADS  Article  Google Scholar 

  5. 5.

    Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    Lepri, S.: Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Springer, Berlin (2016)

    Google Scholar 

  7. 7.

    Casati, G., Ford, J., Vivaldi, F., Visscher, W.: One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52(21), 1861–1864 (1984)

    ADS  Article  Google Scholar 

  8. 8.

    Aoki, K., Kusnezov, D.: Bulk properties of anharmonic chains in strong thermal gradients: non-equilibrium \(\varphi ^4\) theory. Phys. Lett. A 265(4), 250–256 (2000)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Gendelman, O., Savin, A.: Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 106(3), 34,004 (2014)

    Article  Google Scholar 

  10. 10.

    Savin, A., Kosevich, Y.: Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys. Rev. E 89(3), 032,102 (2014)

    Article  Google Scholar 

  11. 11.

    Gendelman, O., Savin, A.: Heat conduction in a chain of colliding particles with a stiff repulsive potential. Phys. Rev. E 94(5), 052,137 (2016)

    Article  Google Scholar 

  12. 12.

    Spohn, H.: Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, pp. 107–158. Springer (2016)

  13. 13.

    Bonetto, F., Lebowitz, J., Lukkarinen, J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116(1), 783–813 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Le-Zakharov, A., Krivtsov, A.: Molecular dynamics investigation of heat conduction in crystals with defects. Dokl. Phys. 53(5), 261–264 (2008)

    ADS  MATH  Article  Google Scholar 

  15. 15.

    Chang, C., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075,903 (2008)

    Article  Google Scholar 

  16. 16.

    Xu, X., Pereira, L., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Bui, C., Xie, R., Thong, J., Hong, B., Loh, K., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    Hsiao, T., Huang, B., Chang, H., Liou, S., Chu, M., Lee, S., Chang, C.: Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91(3), 035,406 (2015)

    Article  Google Scholar 

  18. 18.

    Cahill, D., Ford, W., Goodson, K., Mahan, G., Majumdar, A., Maris, H., Merlin, R., Phillpot, S.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Liu, S., Xu, X., Xie, R., Zhang, G., Li, B.: Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems. Eur. Phys. J. B 85, 337 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    Chang, C.: Experimental probing of non-Fourier thermal conductors. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921, pp. 305–338. Springer (2016)

  21. 21.

    Peierls, R.: Quantum Theory of Solids. Oxford University Press, Oxford (1955)

    Google Scholar 

  22. 22.

    Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford (1960)

    Google Scholar 

  23. 23.

    Hsiao, T., Chang, H., Liou, S., Chu, M., Lee, S., Chang, C.: Observation of room-temperature ballistic thermal conduction persisting over 8.3 \(\mu \)m in SiGe nanowires. Nat. Nanotechnol. 8(7), 534–538 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    Kannan, V., Dhar, A., Lebowitz, J.: Nonequilibrium stationary state of a harmonic crystal with alternating masses. Phys. Rev. E 85(4), 041,118 (2012)

    Article  Google Scholar 

  25. 25.

    Dhar, A., Dandekar, R.: Heat transport and current fluctuations in harmonic crystals. Physica A 418, 49–64 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Allen, K., Ford, J.: Energy transport for a three-dimensional harmonic crystal. Phys. Rev. 187(3), 1132 (1969)

    ADS  Article  Google Scholar 

  27. 27.

    Nakazawa, H.: On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 45, 231–262 (1970)

    ADS  Article  Google Scholar 

  28. 28.

    Lee, L., Dhar, A.: Heat conduction in a two-dimensional harmonic crystal with disorder. Phys. Rev. Lett. 95(9), 094,302 (2005)

    Article  Google Scholar 

  29. 29.

    Kundu, A., Chaudhuri, A., Roy, D., Dhar, A., Lebowitz, J., Spohn, H.: Heat conduction and phonon localization in disordered harmonic crystals. Europhys. Lett. 90(4), 40,001 (2010)

    Article  Google Scholar 

  30. 30.

    Dhar, A., Saito, K.: Heat transport in harmonic systems. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921, pp. 39–106. Springer (2016)

  31. 31.

    Bernardin, C., Kannan, V., Lebowitz, J., Lukkarinen, J.: Harmonic systems with bulk noises. J. Stat. Phys. 146(4), 800–831 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Freitas, N., Paz, J.: Analytic solution for heat flow through a general harmonic network. Phys. Rev. E 90(4), 042,128 (2014)

    Article  Google Scholar 

  33. 33.

    Freitas, N., Paz, J.: Erratum: analytic solution for heat flow through a general harmonic network. Phys. Rev. E 90(6), 069,903 (2014)

    Article  Google Scholar 

  34. 34.

    Hoover, W., Hoover, C.: Hamiltonian thermostats fail to promote heat flow. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3365–3372 (2013)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Lukkarinen, J., Marcozzi, M., Nota, A.: Harmonic chain with velocity flips: thermalization and kinetic theory. J. Stat. Phys. 165(5), 809–844 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Gendelman, O., Shvartsman, R., Madar, B., Savin, A.: Nonstationary heat conduction in one-dimensional models with substrate potential. Phys. Rev. E 85(1), 011,105 (2012)

    Article  Google Scholar 

  37. 37.

    Tsai, D., MacDonald, R.: Molecular-dynamical study of second sound in a solid excited by a strong heat pulse. Phys. Rev. E 14(10), 4714 (1976)

    ADS  Article  Google Scholar 

  38. 38.

    Ladd, A., Moran, B., Hoover, W.: Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. E 34(8), 5058 (1986)

    ADS  Article  Google Scholar 

  39. 39.

    Volz, S., Saulnier, J.B., Lallemand, M., Perrin, B., Depondt, P., Mareschal, M.: Transient Fourier-law deviation by molecular dynamics in solid argon. Phys. Rev. E 54(1), 340 (1996)

    Article  Google Scholar 

  40. 40.

    Daly, B., Maris, H., Imamura, K., Tamura, S.: Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. E 66(2), 024,301 (2002)

    Article  Google Scholar 

  41. 41.

    Gendelman, O., Savin, A.: Nonstationary heat conduction in one-dimensional chains with conserved momentum. Phys. Rev. E 81(2), 020,103 (2010)

    Article  Google Scholar 

  42. 42.

    Babenkov, M., Krivtsov, A., Tsvetkov, D.: Energy oscillations in a one-dimensional harmonic crystal on an elastic substrate. Phys. Mesomech. 19(3), 282–290 (2016)

    Article  Google Scholar 

  43. 43.

    Krivtsov, A.: Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys. 60(9), 407–411 (2015)

    ADS  Article  Google Scholar 

  44. 44.

    Krivtsov, A.: Energy oscillations in a one-dimensional crystal. Dokl. Phys. 59(9), 427–430 (2014)

    Article  Google Scholar 

  45. 45.

    Hoover, W., Hoover, C.: Simulation and Control of Chaotic Nonequilibrium Systems. World Scientific, Singapore (2015)

    Google Scholar 

  46. 46.

    Krivtsov, A.: From nonlinear oscillations to equation of state in simple discrete systems. Chaos Solitons Fractals 17(1), 79–87 (2003)

    ADS  MATH  Article  Google Scholar 

  47. 47.

    Berinskii, I.: Elastic networks to model auxetic properties of cellular materials. Int. J. Mech. Sci. 115, 481–488 (2016)

    Article  Google Scholar 

  48. 48.

    Kuzkin, V., Krivtsov, A., Podolskaya, E., Kachanov, M.: Lattice with vacancies: elastic fields and effective properties in frameworks of discrete and continuum models. Philos. Mag. 96(15), 1538–1555 (2016)

    ADS  Article  Google Scholar 

  49. 49.

    Berinskii, I., Krivtsov, A.: Linear oscillations of suspended graphene. In: Shell and Membrane Theories in Mechanics and Biology, pp. 99–107. Springer, Cham (2015)

  50. 50.

    Berinskii, I., Krivtsov, A.: A hyperboloid structure as a mechanical model of the carbon bond. Int. J. Solids Struct. 96, 145–152 (2016)

    Article  Google Scholar 

  51. 51.

    Shishkina, E., Gavrilov, S.: A strain-softening bar with rehardening revisited. Math. Mech. Solids 21(2), 137–151 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Gavrilov, S.: Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM—J. Appl. Math. Mech. / Z. Angew. Math. Mech. 87(2), 117–127 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Gavrilov, S., Shishkina, E.: On stretching of a bar capable of undergoing phase transitions. Contin. Mech. Thermodyn. 22, 299–316 (2010)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Gavrilov, S., Shishkina, E.: A strain-softening bar revisited. ZAMM—J. Appl. Math. Mech. / Z. Angew. Math. Mech. 95(12), 1521–1529 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Shishkina, E., Gavrilov, S.: Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. 87(6), 1019–1036 (2017)

    ADS  Article  Google Scholar 

  56. 56.

    Gavrilov, S., Herman, G.: Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. J. Sound Vib. 331(20), 4464–4480 (2012)

    ADS  Article  Google Scholar 

  57. 57.

    Krivtsov, A.: On heat transfer in a thermally perturbed harmonic chain. arXiv:1709.07924 (2017)

  58. 58.

    Chandrasekharalah, D.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355 (1986)

    ADS  Article  Google Scholar 

  59. 59.

    Tzou, D.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, Hoboken (2014)

    Google Scholar 

  60. 60.

    Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. L’Acad. Sci. 247(4), 431–433 (1958)

    MATH  Google Scholar 

  61. 61.

    Vernotte, P.: Les paradoxes de la théorie continue de léquation de la chaleur. C. R. L’Acad. Sci. 246(22), 3154–3155 (1958)

    MATH  Google Scholar 

  62. 62.

    Kuzkin, V., Krivtsov, A.: An analytical description of transient thermal processes in harmonic crystals. Phys. Solid State 59(5), 1051–1062 (2017)

    ADS  Article  Google Scholar 

  63. 63.

    Kuzkin, V., Krivtsov, A.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Condens. Matter 29(50), 505,401 (2017)

    Article  Google Scholar 

  64. 64.

    Indeitsev, D., Osipova, E.: A two-temperature model of optical excitation of acoustic waves in conductors. Dokl. Phys. 62(3), 136–140 (2017)

    ADS  Article  Google Scholar 

  65. 65.

    Andrews, L.: Special Functions of Mathematics for Engineers. SPIE Publications, Bellingham (1997)

    Google Scholar 

  66. 66.

    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  67. 67.

    Stepanov, S.: Stochastic World. Springer, Berlin (2013)

    Google Scholar 

  68. 68.

    Langevin, P.: Sur la théorie du mouvement brownien. C. R. L’Acad. Sci. 146(530–533), 530 (1908)

    MATH  Google Scholar 

  69. 69.

    Lemons, D., Gythiel, A.: Paul Langevin’s 1908 paper on the theory of Brownian motion ["Sur la théorie du mouvement brownien"]. Am. J. Phys. 65(11), 1079–1081 (1997)

    ADS  Article  Google Scholar 

  70. 70.

    Krivtsov, A.: Dynamics of heat processes in one-dimensional harmonic crystals. In: Problems of Mathematical Physics and Applied Mathematics: Proceedings of the Seminar in Honor of Prof. E.A. Tropp’s 75th Anniversary, pp. 63–81. Ioffe Institute, St. Petersburg (2016) (in Russian)

  71. 71.

    Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    Google Scholar 

  72. 72.

    Lepri, S., Mejía-Monasterio, C., Politi, A.: Nonequilibrium dynamics of a stochastic model of anomalous heat transport. J. Phys. A 43(6), 065,002 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  73. 73.

    Nayfeh, A.: Perturbation Methods. Wiley, Hoboken (2008)

    Google Scholar 

  74. 74.

    Krivtsov, A.: On unsteady heat conduction in a harmonic crystal. arXiv:1509.02506 (2015)

  75. 75.

    Brigham, E.: The Fast Fourier Transform and Its Applications. Prentice Hall, Upper Saddle River (1974)

    Google Scholar 

  76. 76.

    Slepyan, L., Yakovlev, Y.: Integral transform in non-stationary problems of mechanics. Sudostroenie (1980) (in Russian)

  77. 77.

    Gel’fand, I., Shilov, G.: Generalized Functions. Properties and Operations, vol. 1. Academic Press, New York (1964)

    Google Scholar 

  78. 78.

    Polyanin, A.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)

    Google Scholar 

  79. 79.

    Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series. Elementary Functions, vol. 1. Gordon & Breach, New York (1986)

    Google Scholar 

  80. 80.

    Aleixo, R., Oliveira, E.: Green’s function for the lossy wave equation. Rev. Bras. Ensino Fis. 30(1), 1302 (2008)

    Google Scholar 

  81. 81.

    Goldstein, R., Morozov, N.: Mechanics of deformation and fracture of nanomaterials and nanotechnology. Phys. Mesomech. 10(5–6), 235–246 (2007)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Gavrilov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Russian Science Foundation (Grant No. 18-11-00201).

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.N., Krivtsov, A.M. & Tsvetkov, D.V. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mech. Thermodyn. 31, 255–272 (2019). https://doi.org/10.1007/s00161-018-0681-3

Download citation

Keywords

  • Ballistic heat transfer
  • Harmonic crystal
  • Kinetic temperature