Skip to main content
Log in

Hybrid free energy approach for nearly incompressible behaviors at finite strain

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We explore the formulation of nearly incompressible behaviors at finite strain in the context of a hybrid or a mixed energy. Such an energy is a function of both an isochoric deformation and a pressure-like quantity that can be considered as an internal variable. From thermodynamical and physical considerations, new energy functions are developed to correctly describe both nearly incompressible elasticity and thermoelastic behaviors. We discuss the advantages of such a formulation; in particular, we show that this approach makes it possible to unify the variational and the thermodynamical formulations in the nearly incompressible context without using Lagrange multipliers or other specific variational principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atluri, S.N., Reissner, E.: On the formulation of variational theorems involving volume constraints. Comput. Mech. 5(5), 337–344 (1989). https://doi.org/10.1007/BF01047050

    Article  MATH  Google Scholar 

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  Google Scholar 

  3. Chadwick, P.: Thermo-mechanics of rubberlike materials. Phil. Trans. R. Soc. Lond. Ser A, Math. Phys. Sci. 276(1260), 371–403 (1974). http://www.jstor.org/stable/74231

  4. Chadwick, P., Creasy, C.: Modified entropic elasticity of rubberlike materials. J. Mech. Phys. Solids 32(5), 337–357 (1984). https://doi.org/10.1016/0022-5096(84)90018-8. http://www.sciencedirect.com/science/article/pii/0022509684900188

    Article  ADS  Google Scholar 

  5. Ciarlet, P.G.: Élasticité tridimensionnelle. Masson, Armand Colin (1986)

    MATH  Google Scholar 

  6. Ehlers, W., Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  MathSciNet  Google Scholar 

  7. Flory, P.J.: Principles of Polymer Chemistry, first edn. Cornell University Press, Ithaca (1953)

    Google Scholar 

  8. Flory, R.J.: Thermodynamic relations for highly elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  9. Germain, P., Nguyen, Q., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983). https://doi.org/10.1115/1.3167184

    Article  ADS  MATH  Google Scholar 

  10. Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003). https://doi.org/10.1016/S0020-7683(03)00086-6. http://www.sciencedirect.com/science/article/pii/S0020768303000866

    Article  MathSciNet  Google Scholar 

  11. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)

    MATH  Google Scholar 

  12. Holzapfel, G., Simo, J.: Entropy elasticity of isotropic rubber-like solids at finite strains. Comput. Methods Appl. Mech. Eng. 132(12), 17–44 (1996). https://doi.org/10.1016/0045-7825(96)01001-8. http://www.sciencedirect.com/science/article/pii/0045782596010018

    Article  ADS  MathSciNet  Google Scholar 

  13. Kannan, K., Rajagopal, K.: A thermodynamical framework for chemically reacting systems. Zeitschrift fr Angewandte Mathematik und Physik (ZAMP) 62, 331–363 (2011). https://doi.org/10.1007/s00033-010-0104-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Koprowski-Theiß, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82(8), 1117–1132 (2012). https://doi.org/10.1007/s00419-012-0616-6

    Article  ADS  Google Scholar 

  15. Lejeunes, S., Eyheramendy, D., Boukamel, A., Delattre, A., Méo, S., Ahose, K.D.: A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo-chemo-mechanical aging of rubbers. Mech. Time-Depend. Mater. 22(1), 51–66 (2018). https://doi.org/10.1007/s11043-017-9351-2

    Article  ADS  Google Scholar 

  16. Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51(34), 729–739 (2014). https://doi.org/10.1016/j.ijsolstr.2013.10.036. http://www.sciencedirect.com/science/article/pii/S0020768313004319

    Article  Google Scholar 

  17. Lion, A., Peters, J., Kolmeder, S.: Simulation of temperature history-dependent phenomena of glass-forming materials based on thermodynamics with internal state variables. Thermochim. Acta 522(1), 182–193 (2011). https://doi.org/10.1016/j.tca.2010.12.017. http://www.sciencedirect.com/science/article/pii/S0040603110004715. Special Issue: Interplay between Nucleation, Crystallization, and the Glass Transition

    Article  Google Scholar 

  18. Liu, C., Hofstetter, G., Mang, H.: 3d finite element analysis of rubberlike materials at finite strains. Eng. Comput. 11, 111–128 (1994). https://doi.org/10.1108/02644409410799236

    Article  Google Scholar 

  19. Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Meth. Eng. 37, 1981–2004 (1994)

    Article  MathSciNet  Google Scholar 

  20. Miehe, C.: Entropic thermoelasticity at finite strains. aspects of the formulation and numerical implementation. Computer Methods in Applied Mechanics and Engineering 120(3), 243–269 (1995). https://doi.org/10.1016/0045-7825(94)00057-T. http://www.sciencedirect.com/science/article/pii/004578259400057T

    Article  ADS  MathSciNet  Google Scholar 

  21. Ogden, R.: Elastic deformations of rubberlike solids. In: Hopkins, H., Sewell, M., (eds.) Mechanics of Solids, pp. 499–537. Pergamon, Oxford (1982). https://doi.org/10.1016/B978-0-08-025443-2.50021-5. https://www.sciencedirect.com/science/article/pii/B9780080254432500215

    Chapter  Google Scholar 

  22. Reissner, E.: On a variational principle for elastic displacements and pressure. J. Appl. Mech. 51, 444–445 (1984). https://doi.org/10.1115/1.3167643

    Article  ADS  MATH  Google Scholar 

  23. Rodriguez, E.L., Filisko, F.E.: Thermal effects in styrene-butadiene rubber at high hydrostatic pressures. Polymer 27, 1943–1947 (1986)

    Article  Google Scholar 

  24. Simo, J., Taylor, R., Pister, K.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51(1), 177–208 (1985). https://doi.org/10.1016/0045-7825(85)90033-7. http://www.sciencedirect.com/science/article/pii/0045782585900337

    Article  ADS  MathSciNet  Google Scholar 

  25. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85(3), 273–310 (1991). https://doi.org/10.1016/0045-7825(91)90100-K. http://www.sciencedirect.com/science/article/pii/004578259190100K

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Lejeunes.

Additional information

Communicated by Johlitz, Laiarinandrasana and Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lejeunes, S., Eyheramendy, D. Hybrid free energy approach for nearly incompressible behaviors at finite strain. Continuum Mech. Thermodyn. 32, 387–401 (2020). https://doi.org/10.1007/s00161-018-0680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0680-4

Keywords

Navigation