Advertisement

Hybrid free energy approach for nearly incompressible behaviors at finite strain

  • Stéphane Lejeunes
  • Dominique Eyheramendy
Original Article
  • 29 Downloads

Abstract

We explore the formulation of nearly incompressible behaviors at finite strain in the context of a hybrid or a mixed energy. Such an energy is a function of both an isochoric deformation and a pressure-like quantity that can be considered as an internal variable. From thermodynamical and physical considerations, new energy functions are developed to correctly describe both nearly incompressible elasticity and thermoelastic behaviors. We discuss the advantages of such a formulation; in particular, we show that this approach makes it possible to unify the variational and the thermodynamical formulations in the nearly incompressible context without using Lagrange multipliers or other specific variational principles.

Keywords

Thermomechanical coupling Entropic elasticity Free energy Volumetric behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Atluri, S.N., Reissner, E.: On the formulation of variational theorems involving volume constraints. Comput. Mech. 5(5), 337–344 (1989).  https://doi.org/10.1007/BF01047050 CrossRefzbMATHGoogle Scholar
  2. 2.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chadwick, P.: Thermo-mechanics of rubberlike materials. Phil. Trans. R. Soc. Lond. Ser A, Math. Phys. Sci. 276(1260), 371–403 (1974). http://www.jstor.org/stable/74231
  4. 4.
    Chadwick, P., Creasy, C.: Modified entropic elasticity of rubberlike materials. J. Mech. Phys. Solids 32(5), 337–357 (1984).  https://doi.org/10.1016/0022-5096(84)90018-8. http://www.sciencedirect.com/science/article/pii/0022509684900188
  5. 5.
    Ciarlet, P.G.: Élasticité tridimensionnelle. Masson, Armand Colin (1986)zbMATHGoogle Scholar
  6. 6.
    Ehlers, W., Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flory, P.J.: Principles of Polymer Chemistry, first edn. Cornell University Press, Ithaca (1953)Google Scholar
  8. 8.
    Flory, R.J.: Thermodynamic relations for highly elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Germain, P., Nguyen, Q., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983).  https://doi.org/10.1115/1.3167184 ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003).  https://doi.org/10.1016/S0020-7683(03)00086-6. http://www.sciencedirect.com/science/article/pii/S0020768303000866
  11. 11.
    Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)zbMATHGoogle Scholar
  12. 12.
    Holzapfel, G., Simo, J.: Entropy elasticity of isotropic rubber-like solids at finite strains. Comput. Methods Appl. Mech. Eng. 132(12), 17–44 (1996).  https://doi.org/10.1016/0045-7825(96)01001-8. http://www.sciencedirect.com/science/article/pii/0045782596010018
  13. 13.
    Kannan, K., Rajagopal, K.: A thermodynamical framework for chemically reacting systems. Zeitschrift fr Angewandte Mathematik und Physik (ZAMP) 62, 331–363 (2011).  https://doi.org/10.1007/s00033-010-0104-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Koprowski-Theiß, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82(8), 1117–1132 (2012).  https://doi.org/10.1007/s00419-012-0616-6 ADSCrossRefGoogle Scholar
  15. 15.
    Lejeunes, S., Eyheramendy, D., Boukamel, A., Delattre, A., Méo, S., Ahose, K.D.: A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo-chemo-mechanical aging of rubbers. Mech. Time-Depend. Mater. 22(1), 51–66 (2018).  https://doi.org/10.1007/s11043-017-9351-2 ADSCrossRefGoogle Scholar
  16. 16.
    Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51(34), 729–739 (2014).  https://doi.org/10.1016/j.ijsolstr.2013.10.036. http://www.sciencedirect.com/science/article/pii/S0020768313004319
  17. 17.
    Lion, A., Peters, J., Kolmeder, S.: Simulation of temperature history-dependent phenomena of glass-forming materials based on thermodynamics with internal state variables. Thermochim. Acta 522(1), 182–193 (2011).  https://doi.org/10.1016/j.tca.2010.12.017. http://www.sciencedirect.com/science/article/pii/S0040603110004715. Special Issue: Interplay between Nucleation, Crystallization, and the Glass Transition
  18. 18.
    Liu, C., Hofstetter, G., Mang, H.: 3d finite element analysis of rubberlike materials at finite strains. Eng. Comput. 11, 111–128 (1994).  https://doi.org/10.1108/02644409410799236 CrossRefGoogle Scholar
  19. 19.
    Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Meth. Eng. 37, 1981–2004 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Miehe, C.: Entropic thermoelasticity at finite strains. aspects of the formulation and numerical implementation. Computer Methods in Applied Mechanics and Engineering 120(3), 243–269 (1995).  https://doi.org/10.1016/0045-7825(94)00057-T. http://www.sciencedirect.com/science/article/pii/004578259400057T
  21. 21.
    Ogden, R.: Elastic deformations of rubberlike solids. In: Hopkins, H., Sewell, M., (eds.) Mechanics of Solids, pp. 499–537. Pergamon, Oxford (1982).  https://doi.org/10.1016/B978-0-08-025443-2.50021-5. https://www.sciencedirect.com/science/article/pii/B9780080254432500215
  22. 22.
    Reissner, E.: On a variational principle for elastic displacements and pressure. J. Appl. Mech. 51, 444–445 (1984).  https://doi.org/10.1115/1.3167643 ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Rodriguez, E.L., Filisko, F.E.: Thermal effects in styrene-butadiene rubber at high hydrostatic pressures. Polymer 27, 1943–1947 (1986)CrossRefGoogle Scholar
  24. 24.
    Simo, J., Taylor, R., Pister, K.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51(1), 177–208 (1985).  https://doi.org/10.1016/0045-7825(85)90033-7. http://www.sciencedirect.com/science/article/pii/0045782585900337
  25. 25.
    Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85(3), 273–310 (1991).  https://doi.org/10.1016/0045-7825(91)90100-K. http://www.sciencedirect.com/science/article/pii/004578259190100K

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LMAAix-Marseille University, Centrale Marseille, CNRSMarseilleFrance

Personalised recommendations