Thermodynamically consistent data-driven computational mechanics

Abstract

In the paradigm of data-intensive science, automated, unsupervised discovering of governing equations for a given physical phenomenon has attracted a lot of attention in several branches of applied sciences. In this work, we propose a method able to avoid the identification of the constitutive equations of complex systems and rather work in a purely numerical manner by employing experimental data. In sharp contrast to most existing techniques, this method does not rely on the assumption on any particular form for the model (other than some fundamental restrictions placed by classical physics such as the second law of thermodynamics, for instance) nor forces the algorithm to find among a predefined set of operators those whose predictions fit best to the available data. Instead, the method is able to identify both the Hamiltonian (conservative) and dissipative parts of the dynamics while satisfying fundamental laws such as energy conservation or positive production of entropy, for instance. The proposed method is tested against some examples of discrete as well as continuum mechanics, whose accurate results demonstrate the validity of the proposed approach.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Nat. Acad. Sci. 104(24), 9943–9948 (2007)

    ADS  Article  MATH  Google Scholar 

  2. 2.

    Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: deformation and fracture phenomena*. Math. Mech. Solids 22(11), 2120–2134 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Della Corte, A., Battista, A., dellIsola, F.: Referential description of the evolution of a 2d swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    Della Corte, A., Battista, A., dell’Isola, F.: Modeling Deformable Bodies Using Discrete Systems with Centroid-Based Propagating Interaction: Fracture and Crack Evolution, pp. 59–88. Springer, Berlin (2017)

    Google Scholar 

  6. 6.

    Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Nat. Acad. Sci. USA 113(15), 3932–3937 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Peherstorfer, B., Willcox, K.: Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Daniels, B.C., Nemenman, I.: Automated adaptive inference of phenomenological dynamical models. Nat. Commun. 6, 8133 EP (2015)

    ADS  Article  Google Scholar 

  9. 9.

    Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Ibañez, R., Abisset-Chavanne, E., Aguado, J.V., Gonzalez, D., Cueto, E., Chinesta, F.: A manifold learning approach to data-driven computational elasticity and inelasticity. Arch. Comput. Methods Eng. 25, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Oettinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken (2005)

    Google Scholar 

  12. 12.

    Grmela, M., Christian Öttinger, H.: Dynamics and thermodynamics of complex fluids. i. development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Öttinger, H.C.: Nonequilibrium thermodynamics: a powerful tool for scientists and engineers. DYNA 79, 122–128 (2012)

    Google Scholar 

  14. 14.

    Romero, I.: Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int. J. Numer. Meth. Eng. 79(6), 706–732 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Romero, I.: Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part i: monolithic integrators and their application to finite strain thermoelasticity. Comput. Methods Appl. Mech. Eng. 199(25–28), 1841–1858 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Español, P.: Statistical Mechanics of Coarse-Graining, pp. 69–115. Springer, Berlin (2004)

    Google Scholar 

  17. 17.

    Ibañez, R., Borzacchiello, D., Aguado, J.V., Abisset-Chavanne, E., Cueto, E., Ladeveze, P., Chinesta, F.: Data-driven non-linear elasticity. Constitutive manifold construction and problem discretization. Comput. Mech. 60(5), 813–826 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Lopez, E., Gonzalez, D., Aguado, J.V., Abisset-Chavanne, E., Cueto, E., Binetruy, C., Chinesta, F.: A manifold learning approach for integrated computational materials engineering. Arch. Comput. Methods Eng. 25, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Manzoni, A., Lassila, T., Quarteroni, A., Rozza, G.: A reduced-order strategy for solving inverse bayesian shape identification problems in physiological flows. In: Hans Georg B., Xuan Phu H., Rolf R., Johannes P. Schlöder, (eds.) Modeling, Simulation and Optimization of Complex Processes—HPSC 2012: In: Proceedings of the Fifth International Conference on High Performance Scientific Computing, March 5–9, 2012, Hanoi, Vietnam, pp. 145–155. Springer International Publishing, Cham, (2014)

  20. 20.

    Sullivan, T.J.: Introduction to Uncertainty Quantification. Springer, Berlin (2015). [Texts in Applied Mathematics]

    Google Scholar 

  21. 21.

    Soize, C.: The Fokker–Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, 17th edn. World Scientific, SIngapore (1994)

    Google Scholar 

  22. 22.

    Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College Press, London (2002)

    Google Scholar 

  23. 23.

    Walters, K., Webster, M.F.: The distinctive CFD challenges of computational rheology. Int. J. Numer. Meth. Fluids 43(5), 577–596 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College PRess, London (2002)

    Google Scholar 

  25. 25.

    Pasquali, Matteo., Scriven, L.E.: Theoretical modeling of microstructured liquids: a simple thermodynamic approach. Journal of Non-Newtonian Fluid Mechanics, 120(1):101 – 135, (2004). 3rd International workshop on Nonequilibrium Thermodynamics and Complex Fluids

  26. 26.

    Vázquez-Quesada, A., Ellero, M., Español, P.: Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J. Chem. Phys. 130(3), 034901 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    Mavrantzas, V.G., Christian Öttinger, H.: Atomistic monte carlo simulations of polymer melt elasticity: their nonequilibrium thermodynamics generic formulation in a generalized canonical ensemble. Macromolecules 35(3), 960–975 (2002)

    ADS  Article  Google Scholar 

  28. 28.

    Kirchdoerfer, T., Ortiz, M.: Data driven computing with noisy material data sets. Comput. Methods Appl. Mech. Eng. 326, 622–641 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Christian Öttinger, H.: Preservation of thermodynamic structure in model reduction. Phys. Rev. E 91, 032147 (2015)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae, ser. Al. Math. Phys., 37, (1946)

  31. 31.

    Loève, M.M.: Probability theory. The University Series in Higher Mathematics, 3rd edn. Van Nostrand, Princeton, NJ (1963)

    Google Scholar 

  32. 32.

    Lorenz, E.N.: Empirical Orthogonal Functions and Statistical Weather Prediction. MIT, Departement of Meteorology, Scientific Report Number 1, Statistical Forecasting Project, (1956)

  33. 33.

    Millán, D., Arroyo, M.: Nonlinear manifold learning for model reduction in finite elastodynamics. Comput. Methods Appl. Mech. Eng. 261–262, 118–131 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Laso, M., Öttinger, H.C.: Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Nonnewton. Fluid Mech. 47, 1–20 (1993)

    Article  MATH  Google Scholar 

  35. 35.

    Cueto, E., Laso, M., Chinesta, F.: Meshless stochastic simulation of micro macro kinetic theory models. Int. J. Multiscale Comput. Eng. 9(1), 1–16 (2011)

    Article  Google Scholar 

  36. 36.

    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Grants number DPI2017-85139-C2-1-R and DPI2015-72365-EXP and by the Regional Government of Aragon and the European Social Fund, research group T88.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elías Cueto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, D., Chinesta, F. & Cueto, E. Thermodynamically consistent data-driven computational mechanics. Continuum Mech. Thermodyn. 31, 239–253 (2019). https://doi.org/10.1007/s00161-018-0677-z

Download citation

Keywords

  • Data-driven computational mechanics
  • GENERIC
  • Governing equations