Continuum Mechanics and Thermodynamics

, Volume 30, Issue 4, pp 889–915 | Cite as

Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes

  • Rami Ahmad El-Nabulsi
Original Article


We study some aspects of nonequilibrium thermodynamics and heat diffusion processes based on Suykens’s nonlocal-in-time kinetic energy approach recently introduced in the literature. A number of properties and insights are obtained in particular the emergence of oscillating entropy and nonlocal diffusion equations which are relevant to a number of physical and engineering problems. Several features are obtained and discussed in details.


Nonlocal-in-time kinetic energy Nonequilibrium thermodynamics Oscillating entropy Nonlocal diffusion equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Gruber, C., Brechet, S.D.: Lagrange equations coupled to a thermal equations: mechanics as consequence of thermodynamics. Entropy 13, 367–378 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gay-Balmaz, F., Yoshimura, H.: A Lagrangian formalism for nonequilibrium thermodynamics. arXiv: 1510.00792
  3. 3.
    Stuckelberg von Breidenbach, E.C.G., Scheurer, P.B.: Thermocinetique Phenomenologique Galileenne. Birkhauser, Basel (1974)zbMATHGoogle Scholar
  4. 4.
    Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes II. Systems with kinetic energy. Phys. Rev. 91, 1512–1515 (1953)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Prigogine, I.: Etude thermodynamique des phenomenes irreversibles, Thesis, Paris: Dunod and Liege: Desoer (1947)Google Scholar
  9. 9.
    Biot, M.A.: A virtual dissipation principle and Lagrangian equations in non-linear irreversible thermodynamics. Acad. R. Belg. Bull. Cl. Sci. 5(61), 6–30 (1975)MathSciNetGoogle Scholar
  10. 10.
    Biot, M.A.: New variational-Lagrangian irreversible thermodynamics with application to viscous flow, reaction–diffusion, and solid mechanics. Adv. Appl. Mech. 24, 1–91 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fukagawa, H., Fujitani, Y.: A variational principle for dissipative fluid dynamics. Prog. Theor. Phys. 127(5), 921–935 (2012)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Mahan, G.D., Claro, F.: Nonlocal theory of thermal conductivity. Phys. Rev. B 38(3), 1963–1969 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Grmela, M., Lebon, G.: Finite-speed propagation of heat: a nonlocal and nonlinear approach. Phys. A 248, 428–441 (1998)CrossRefGoogle Scholar
  14. 14.
    Sobolev, S.L.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37(14), 2175–2182 (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Duangpanya, M., Peridynamic, A.: Formulation for Transient Heat Conduction in Bodies with Evolving Discontinuities, PhD thesis, University of Nebraska, Lincoln, Nebraska (2011)Google Scholar
  16. 16.
    Edelen, D.G.B.: Irreversible thermodynamics of nonlocal systems. Int. J. Eng. Sci. 12, 607–631 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shnaid, I.: Thermodynamically consistent description of heat conduction with finite speed of heat propagation. Int. J. Heat Mass Transf. 46, 3853–3863 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kanavin, A.P., Uryupin, S.A.: Nonlocal heat transfer in nanostructures. Phys. Lett. A 372, 2069–2972 (2008)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. Comp. Rend. Mec. 244, 388–401 (2016)ADSGoogle Scholar
  20. 20.
    Mongiovi, M.S., Zingales, M.: A non-local model of thermal energy transport: the fractional temperature equation. Int. J. Heat Mass Transf. 67, 593–601 (2013)CrossRefGoogle Scholar
  21. 21.
    Borino, G., DiPaola, M., Zingales, M.: A non-local model of fractional heat conduction in rigid bodies. Eur. Phys. J. Spec. Top. 193, 173–184 (2010)CrossRefGoogle Scholar
  22. 22.
    Chen, G.: Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transf. 118(3), 539–545 (1996)CrossRefGoogle Scholar
  23. 23.
    Eringen, C.A.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12(12), 1063–1077 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Eringen, C.A.: Nonlocal theory of wave propagation in thermoelastic plates. Int. J. Eng. Sci. 29(7), 831–843 (1991)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kanavin, A.P., Uryupin, S.A.: Nonlocal heat transfer in a degenerate conductor heated by a femtosecond laser pulse. Quantum Elect. 38, 159–164 (2009)CrossRefGoogle Scholar
  26. 26.
    Ovchinnikov, N.N., Kushtanova, G.G.: Nonlocal heat transfer in two-dimensional Lennard–Jones crystal: application of the molecular dynamics method. Res. Phys. 6, 258–262 (2016)Google Scholar
  27. 27.
    Van, P.: Weakly nonlocal irreversible thermodynamics. Ann. Phys. 12, 142–169 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    El-Nabulsi, R.A.: Dynamics of pulsatile flows through microtube from nonlocality. Mech. Res. Comm. 86, 18–26 (2017)CrossRefGoogle Scholar
  30. 30.
    El-Nabulsi, R.A.: Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. 16, 223–234 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Nonlinear Mech. 93, 65–81 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    El-Nabulsi, R.A.: Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E Low-Dimens. Syst. Nanostruct. 98, 90–104 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    El-Nabulsi, R. A.: On maximal acceleration and quantum acceleratum operator in quantum mechanics, Quant. Stud. Math. Found. (2017)
  34. 34.
    Kamalov, T. F.: Classical and quantum-mechanical axioms with the higher time derivative formalism, J. Phys. Conf. Ser. 442, 012051 (4 pages) (2013)Google Scholar
  35. 35.
    Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hopper, R.W., Uhlmann, D.R.: Higher derivatives in the thermodynamics of uniform solutions. I. Basic interface theory. J. Chem. Phys. 56, 4036–4042 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    Ciancio, V., Cimmelli, V.A., Van, P.: On the evolution of higher order fluxes in non-equilibrium thermodynamics. Math. Comput. Mod. 45, 126–136 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tahseen, N., Broadbridge, P.: Fourth order diffusion equations with increasing entropy. Entropy 14, 1127–1139 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83, 179–206 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry, \(2^{{\rm nd}}\) Edition. Imperial College Press, World Scientific Publishing, Singapore (2011)CrossRefGoogle Scholar
  41. 41.
    Prigogine, I., Kondepuli, D.: Thermodynamique: Des Moteur Thermique aux Structures Dissipatives. Editions Odile Jacob, Paris (1999)Google Scholar
  42. 42.
    Canessa, E.: Oscillating entropy. arXiv: 1307.6681
  43. 43.
    del Rio, L., Aberg, J., Renner, R., Dahlsten, O., Vedral, V.: The thermodynamic meaning of negative entropy. Nature 474, 61–63 (2011)CrossRefGoogle Scholar
  44. 44.
    Cerf, N.J., Adami, C.: Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lopes, A.O., Mohr, J., Souza, R.R., Thieullen, Ph: Negative entropy, zero temperature and Markov chains on the interval. Bull. Braz. Math. Soc. New Ser. 40, 1 (1009)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Carrillo, C., Fife, P.: Spatial effects in discrete generation population models. J. Math. Biol. 50, 161–188 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Cortazar, C., Elgueta, M., Rossi, J.D.: A non-local diffusion equation whose solutions develop a free boundary. Ann. Henri Poincare 6, 269–281 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Ahmad, B., Alsaedi, A., Kirane, M.: On a reaction diffusion equation with nonlinear time-nonlocal source term. Math. Meth. Appl. Sci. 39, 236–244 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Zheng, J.: Uniform blow-up rate for nonlocal diffusion-like equations with nonlocal nonlinear source. Tokyo J. Math. 39, 199–214 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Gambar, K., Lendvay, M., Lovassy, R., Bugyjas, J.: Application of potentials in the description of transport processes. Acta Polytechnic. Hung. 13, 173–184 (2016)Google Scholar
  53. 53.
    Gambar, K., Markus, F., Nyiri, B.: A variational principle for the balance and constitutive equations in convective systems. J. Non-Equilib. Thermodyn. 16, 217–224 (1991)ADSCrossRefzbMATHGoogle Scholar
  54. 54.
    Cattaneo, C.: Sulla conduzione de calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Vernotte, P.: La véritable équation de la chaleur. Comptes Rend. Acad. Sci. Paris 247, 2103–2105 (1958)Google Scholar
  56. 56.
    Moares, E. M.: Time varying heat conduction in solids. In: Vikhrenko, V. (ed.) Chapter 8 From the Book Heat Conduction-Basic Research, INTECH. ISBN: 978-953-307-404-7, (2011)Google Scholar
  57. 57.
    Henry, D.: Examples of nonlinear parabolic equations in physical, biological and engineering problems. In: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol. 840. Springer, Berlin (1981)Google Scholar
  58. 58.
    Herrera, L., Pavon, D.: Hyperbolic theories of dissipation: Why and when do we need them? Phys. A 307, 121–130 (2002)CrossRefzbMATHGoogle Scholar
  59. 59.
    Freistuhler, H., Warnecke, G (Editors).: Hyperbolic Problems: Theory, Numerics, Applications. In: 8th International Conference in Magdeburg, February/March 2000 Volume II, Springer (2001)Google Scholar
  60. 60.
    Canessa, E.: Stock market and motion of a variable mass spring. Physica A 388, 2168–2172 (2009)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Ozeren, S.F.: Investigation of the time evolutions of some log-periodic oscillators. J. Math. Phys. 51, 122901 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Eringen, C.A.: An unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics and Physics DivisionsAthens Institute for Education and ResearchKolonakiGreece

Personalised recommendations