Continuum Mechanics and Thermodynamics

, Volume 30, Issue 4, pp 775–782 | Cite as

Propagation of a straight crack in dipolar elastic bodies

  • M. Marin
  • A. Öchsner
Original Article


Our study is concerned with some results involving the energy release rate for a sharp and straight crack in an elastic dipolar solid. The effect of the dipolar couple stresses and microinertia on the energy release rate is also investigated.


Elasticity Dipolar bodies Energy release rate Propagation Crack 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altenbach, H., Öchsner, A.: Cellular and Porous Materials in Structures and Processes. Springer, Wien (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Öchsner, A., Augustin, C.: Multifunctional Metallic Hollow Sphere Structures. Springer, Berlin (2009)CrossRefGoogle Scholar
  3. 3.
    Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Iesan, D., Pompei, A.: Equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Iesan, D., Quintanilla, R.: Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 43, 885–907 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng., 2008, Art. No. 158908, pp 1–8 (2008)Google Scholar
  8. 8.
    Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ciarletta, M.: On the bending of microstretch elastic plates. Int. J. Eng. Sci. 37, 1309–1318 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1–2), 291–297 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hlder stability in GreenNaghdi thermoelasticity. Contin. Mech. Thermodyn. 29, 1365–1374 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Straughan, B.: Heat waves. In: Applied Mathematical Sciences, vol. 177, Springer, New York (2011)Google Scholar
  13. 13.
    Marin, M., Baleanu, D.: On vibrations in thermoelasticity without energy dissipa-tion for micropolar bodies. Bound Value Probl., 2016, Art. No. 111, 1–19 (2016)Google Scholar
  14. 14.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eringen, A.C.: Fracture. In: (Ed. by H. Liebowitz), vol. 2. Academic Press, New York (1968).Google Scholar
  18. 18.
    Freund, L.B.: Energy flux into the tip of an extending crack in an elastic solid. J. Elast. 2(4), 341–349 (1972)CrossRefGoogle Scholar
  19. 19.
    Gurtin, M.E.: Thermodynamics and chesive zone in fracture. ZAMP 30(6), 991–1003 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gurtin, M.E., Yatomi, C.: On the energy release rate in elastodynamic crack propagation. Arch. Ration. Mech. Anal. 74(3), 231–247 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, A.B., Wang, L.: Theoretical model of crack branching in magnetoelectric thermoelastic materials. Int. J. Solids Struct. 51(6), 1340–1349 (2014)CrossRefGoogle Scholar
  22. 22.
    Tian, W., Rajapakse, R.K.: Theoretical model for crack branching in magnetoelectroelastic solids. Int. J. Appl. Electromagn. Mech. 27(1–2), 53–74 (2008)Google Scholar
  23. 23.
    Gourgiotis, P.A., Piccolroaz, A.: Steady-state propagation of a mode II crack in couple stress elasticity. Int. J. Fract. 188(2), 119–145 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTransilvania University of BrasovBrasovRomania
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany

Personalised recommendations