Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 641–655 | Cite as

Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours

  • Giovanni Romano
  • Raimondo Luciano
  • Raffaele BarrettaEmail author
  • Marina Diaco
Original Article


Nonlocal elasticity is addressed in terms of integral convolutions for structural models of any dimension, that is bars, beams, plates, shells and 3D continua. A characteristic feature of the treatment is the recourse to the theory of generalised functions (distributions) to provide a unified presentation of previous proposals. Local-nonlocal mixtures are also included in the analysis. Boundary effects of convolutions on bounded domains are investigated, and analytical evaluations are provided in the general case. Methods for compensation of boundary effects are compared and discussed with a comprehensive treatment. Estimates of limit behaviours for extreme values of the nonlocal parameter are shown to give helpful information on model properties, allowing for new comments on previous proposals. Strain-driven and stress-driven models are shown to emerge by swapping the mechanical role of input and output fields in the constitutive convolution, with stress-driven elastic model leading to well-posed problems. Computations of stress-driven nonlocal one-dimensional elastic models are performed to exemplify the theoretical results.


Nonlocal elasticity Nanostructures Distributions Strain-driven model Stress-driven model Boundary effects Limit estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)CrossRefGoogle Scholar
  3. 3.
    Vila, J., Fernández-Sáez, J., Zaera, R.: Nonlinear continuum models for the dynamic behavior of 1D microstructured solids. Int. J. Solids Struct. 117, 111–122 (2017)CrossRefGoogle Scholar
  4. 4.
    Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3–5), 305–312 (2003)CrossRefGoogle Scholar
  5. 5.
    Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013)CrossRefGoogle Scholar
  6. 6.
    Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eringen, A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)Google Scholar
  8. 8.
    Altan, S.B.: Uniqueness of the initial-value problems in nonlocal elastic solids. Int. J. Solids Struct. 25, 1271–1278 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pisano, A.A., Fuschi, P.: Closed form solution for a nonlocal elastic bar in tension. Int. J. Solids Struct. 40, 13–23 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, Y., Zhu, X., Dai, H.: Exact solutions for the static bending of Euler–Bernoulli beams using Eringen two-phase local/nonlocal model. AIP Adv. 6(8), 085114 (2016). ADSCrossRefGoogle Scholar
  11. 11.
    Fernández-Sáez, J., Zaera, R.: Vibrations of Bernoulli–Euler beams using the two-phase nonlocal elasticity theory. Int. J. Eng. Sci. 119, 232–248 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhu, X.W., Wang, Y.B., Dai, H.H.: Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. Int. J. Eng. Sci. 116, 130–140 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)CrossRefGoogle Scholar
  14. 14.
    Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)CrossRefGoogle Scholar
  16. 16.
    Wing, G.M.: A Primer on Integral Equations of the first kind: the problem of deconvolution and unfolding. With the assistance of J. D. Zahrt. Society for Industrial and Applied Mathematics, Philadelphia, PA (1991)Google Scholar
  17. 17.
    Challamel, N., Wang, C.M.: The small length scale effect for a non- local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, C., Yao, L.Q., Chen, W.Q., Li, S.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)CrossRefGoogle Scholar
  19. 19.
    Eringen, A.C.: Nonlocal continuum mechanics based on distributions. Int. J. Eng. Sci. 44, 141–147 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley Publishing Company, Boston (1988)zbMATHGoogle Scholar
  21. 21.
    Sobolev, S.L.: Sur un théoréme d’analyse fonctionnelle. Matematicheskiǐ Sbornik 4(46) (3), 471–497 (1938)Google Scholar
  22. 22.
    Schwartz, L.-M.: Théorie des distributions. 2 vols., 1950/1951, 2nd Ed. (1966). Hermann, Paris (1950)Google Scholar
  23. 23.
    Yosida, K.: Functional Analysis. Springer, New York (1980)zbMATHGoogle Scholar
  24. 24.
    Pijaudier-Cabot, G., Bazant, Z.P.: Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)CrossRefzbMATHGoogle Scholar
  25. 25.
    Polizzotto, C.: Remarks on some aspects of nonlocal theories in solid mechanics. In: Proceedings of the 6th Congress of Italian Society for Applied and Industrial Mathematics (SIMAI), Cagliari, Italy (2002)Google Scholar
  26. 26.
    Borino, G., Failla, B., Parrinello, F.: A symmetric nonlocal damage theory. Int. J. Solids Struct. 40(13–14), 3621–3645 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)zbMATHGoogle Scholar
  28. 28.
    Malagú, M., Benvenuti, E., Simone, A.: One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterization. Europ. J. Mech. A Solids 54, 160–170 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Jirásek, M., Rolshoven, S.: Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 41, 1553–1602 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Polizzotto, C., Fuschi, P., Pisano, A.A.: A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 41(9–10), 2383–2401 (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Romano, G., Barretta, R., Diaco, M.: The geometry of non-linear elasticity. Acta Mech. 225(11), 3199–3235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Romano, G., Diaco, M., Barretta, R.: Variational formulation of the first principle of continuum thermodynamics. Contin. Mech. Thermodyn. 22(3), 177–187 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Romano, G., Barretta, R., Diaco, M.: A geometric rationale for invariance, covariance and constitutive relations. Contin. Mech. Thermodyn. 30, 175–194 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tuna, M., Kirca, M.: Respond to the comment letter by Romano and Barretta on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams”. Int. J. Eng. Sci. 116, 141–144 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Romano, G., Barretta, R.: Comment on the paper exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams by Meral Tuna & Mesut Kirca. Int. J. Eng. Sci. 109, 240–242 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly

Personalised recommendations