Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 629–639 | Cite as

Thermodynamic stability criterion and fluctuation theory in nonextensive thermodynamics

Original Article
  • 34 Downloads

Abstract

We have constructed a nonextensive thermodynamic formalism consisting of two sets of parallel Legendre transformation structures in previous papers. One is the physical set and the other is the Lagrange set. In this paper, we study the thermodynamic stability criterion with a dual interpretation of the thermodynamic relations and quantities. By recourse to the assumption that volume in nonextenstive system is nonadditive, we conclude that it is the physical pressure that is responsible for the mechanical balance between any two parts in a given nonextensive system. It is verified that in the physical set of transformation structures, the stability criterion can be expressed in terms of heat capacity and isothermal compressibility. We also discuss the fluctuation theory in nonextensive thermodynamics.

Keywords

Stability criterion Nonadditivity Fluctuation theory Nonextensive thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Liu, Z.P., Liu, L.Y., Du, J.L.: A nonextensive approach for the instability of current-driven ion-acoustic waves in space plasmas. Phys. Plasmas 16, 072111 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Du, J.L.: Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262 (2004)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Liu, L.Y., Du, J.L.: Ion acoustic waves in the plasma with the power-law \(q\)-distribution in nonextensive statistics. Physica A 387, 4821 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Yu, H.N., Du, J.L.: The nonextensive parameter for the rotating astrophysical systems with power-law distributions. EPL (Eur. Lett.) 116, 60005 (2016) and the references thereinGoogle Scholar
  6. 6.
    Du, J.L.: The nonextensive parameter and Tsallis distribution for self-gravitating systems. Europhys. Lett. 67, 893 (2004)CrossRefGoogle Scholar
  7. 7.
    Leubner, M.P.: Nonextensive theory of dark matter and gas density profiles. Astrophys. J. 632, L1 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Du, J.L.: The Chandrasekhar’s condition of the equilibrium and stability for a star in the nonextensive kinetic theory. New Astron. 12, 60 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Du, J.L.: Nonextensivity and the power-law distributions for the systems with self-gravitating long-range interactions. Astrophys. Space Sci. 312, 47 (2007) and the references thereinGoogle Scholar
  10. 10.
    Liu, B., Goree, J.: Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett. 100, 055003 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Liu, B., Goree, J., Feng, Y.: Non-Gaussian statistics and superdiffusion in a driven-dissipative dusty plasma. Phys. Rev. E 78, 046403 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Oikonomou, T., Provata, A., Tirnakli, U.: Nonextensive statistical approach to non-coding human DNA. Phys. A 387, 2653 (2008)CrossRefGoogle Scholar
  13. 13.
    Rolinski, O.J., Martin, A., Birch, D.J.S.: Human serum albuminc-flavonoid interactions monitored by means of tryptophan kinetics. Ann. N. Y. Acad. Sci. 1130, 314 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Eftaxias, K., Minadakis, G., Potirakis, S.M., Balasis, G.: Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics. Physica A 392, 497 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Anteneodo, C., Tsallis, C., Martinez, A.S.: Risk aversion in economic transactions. Europhys. Lett. 59, 635 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Yamano, T.: Distribution of the Japanese posted land price and the generalized entropy. Eur. Phys. J. B 38, 665 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Abe, S., Martınez, S., Pennini, F.: Nonextensive thermodynamic relations. A. Phys. Lett. A 281, 126 (2001)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Lavagno, A.: Relativistic nonextensive thermodynamics. Phys. Lett. A 301(1), 13 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wang, Q.A., Nivanen, L., Le Mehaute, A., Pezeril, M.: Temperature and pressure in nonextensive thermostatistics. EPL (Eur. Lett.) 65(5), 606 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Abe, S.: Temperature of nonextensive systems: Tsallis entropy as Clausius entropy. Physica A 368(2), 430 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Du, J.L.: Property of Tsallis entropy and principle of entropy increase. Bull. Astron. Soc. India 35, 691 (2007)ADSGoogle Scholar
  22. 22.
    Guo, L.N., Du, J.L.: Heat capacity of the generalized two-atom and many-atom gas in nonextensive statistics. Physica A 388, 4936 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Guo, L.N., Du, J.L.: Thermodynamic potentials and thermodynamic relations in nonextensive thermodynamics. Physica A 390, 183 (2011)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ou, C., Chen, J.: Two long-standing problems in Tsallis’ statistics. Physica A 370, 525 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Abe, S.: Correlation induced by Tsallis’ nonextensivity. Physica A 269(2), 403 (1999)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Abe, S.: General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. Phys. Rev. E 63, 061105 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Martınez, S., Pennini, F., Plastino, A.: Thermodynamics’ zeroth law in a nonextensive scenario. Physica A 295, 416 (2001)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Johal, R.S.: Additive entropy underlying the general composable entropy prescribed by thermodynamic meta-equilibrium. Phys. Lett. A 318, 48 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Johal, R.S.: Composable entropy and deviation from macroscopic equilibrium. Phys. Lett. A 332, 345 (2004)ADSCrossRefMATHGoogle Scholar
  30. 30.
    Scarfone, A.M.: Intensive variables in the framework of the non-extensive thermostatistics. Phys. Lett. A 374, 2701 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zheng, Y.H.: An insight to the nonextensive parameter in the actual gas. Physica A 392, 2487 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Zheng, Y.H., Du, J.L.: The equivalence of isothermal and non-isothermal power law distributions with temperature duality. Physica A 427, 113 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Zheng, Y.H., Du, J.L.: Nonextensive thermodynamic relations based on the assumption of temperature duality. Contin. Mech. Thermodyn. 28, 1791 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zheng, Y.H., Du, J.L.: The stationary state and gravitational temperature in a pure self-gravitating system. Physica A 420, 41 (2015)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lynden-Bell, D.: Negative specific heat in astronomy, physics and chemistry. Physica A 263(1–4), 293 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Silva, R., Alcaniz, J.S.: Negative heat capacity and non-extensive kinetic theory. Phys. Lett. A 313(5), 393 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Taruya, A., Sakagami, M.: Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems. Physica A 307(1), 185 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Liu, L.Y., Du, J.L.: Energy fluctuations and the ensemble equivalence in Tsallis statistics. Physica A 387(22), 5417 (2008)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Guo, R., Du, J.L.: Energy distribution and energy fluctuation in Tsallis statistics. Physica A 391(9), 2853 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Ván, P., Barnaföldi, G.G., Biró, T.S., Ürmössy, K.: Nonadditive thermostatistics and thermodynamics. J. Phys. Conf. Ser. 394(1), 012002 (2012)CrossRefGoogle Scholar
  41. 41.
    Czinner, V.G.: Black hole entropy and the zeroth law of thermodynamics. Int. J. Mod. Phys. D 24(09), 1542015 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringHenan Institute of TechnologyXinxiangChina
  2. 2.Department of Physics, School of ScienceTianjin UniversityTianjinChina
  3. 3.Department of Physics, School of ScienceQiqihar UniversityQiqiharChina

Personalised recommendations