Skip to main content
Log in

Flexural torsional buckling of uniformly compressed beam-like structures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A Timoshenko beam model embedded in a 3D space is introduced for buckling analysis of multi-store buildings, made by rigid floors connected by elastic columns. The beam model is developed via a direct approach, and the constitutive law, accounting for prestress forces, is deduced via a suitable homogenization procedure. The bifurcation analysis for the case of uniformly compressed buildings is then addressed, and numerical results concerning the Timoshenko model are compared with 3D finite element analyses. Finally, some conclusions and perspectives are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, Z., Kosmatka, J.B.: An improved two-node timoshenko beam finite element. Comput. Struct. 47(3), 473–481 (1993)

    Article  ADS  MATH  Google Scholar 

  2. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui, Q.-B., Hans, S., Boutin, C.: Dynamic behaviour of an asymmetric building: experimental and numerical studies. Case Stud. Nondestruct. Test. Eval. 2, 38–48 (2014)

    Article  Google Scholar 

  4. Kim, H.-S., Lee, D.-G., Kim, C.K.: Efficient three-dimensional seismic analysis of a high-rise building structure with shear walls. Eng. Struct. 27(6), 963–976 (2005)

    Article  Google Scholar 

  5. Liu, H., Yang, Z., Gaulke, M.S.: Structural identification and finite element modeling of a 14-story office building using recorded data. Eng. Struct. 27(3), 463–473 (2005)

    Article  Google Scholar 

  6. Chajes, M.J., Finch, W.W., Kirby, J.T.: Dynamic analysis of a ten-story reinforced concrete building using a continuum model. Comput. Struct. 58(3), 487–498 (1996)

    Article  Google Scholar 

  7. Chajes, M.J., Zhang, L., Kirby, J.T.: Dynamic analysis of tall building using reduced-order continuum model. J. Struct. Eng. 122(11), 1284–1291 (1996)

    Article  Google Scholar 

  8. Miranda, E.: Approximate seismic lateral deformation demands in multistory buildings. J. Struct. Eng. 125(4), 417–425 (1999)

    Article  Google Scholar 

  9. Miranda, E., Taghavi, S.: Approximate floor acceleration demands in multistory buildings. I: formulation. J. Struct. Eng. 131(2), 203–211 (2005)

    Article  Google Scholar 

  10. Taghavi, S., Miranda, E.: Approximate floor acceleration demands in multistory buildings. II: applications. J. Struct. Eng. 131(2), 212–220 (2005)

    Article  Google Scholar 

  11. Boutin, C., Hans, S.: Homogenisation of periodic discrete medium: application to dynamics of framed structures. Comput. Geotech. 30(4), 303–320 (2003)

    Article  Google Scholar 

  12. Hans, S., Boutin, C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)

    Article  Google Scholar 

  13. Chesnais, C., Boutin, C. l., Hans, S.: Structural dynamics and generalized continua. Mech. Gen. Contin., pp. 57–76 (2011)

  14. Cluni, F., Gioffrè, M., Gusella, V.: Dynamic response of tall buildings to wind loads by reduced order equivalent shear-beam models. J. Wind Eng. Ind. Aerodyn. 123, 339–348 (2013)

    Article  Google Scholar 

  15. Zalka, K.A.: A simplified method for calculation of the natural frequencies of wall-frame buildings. Eng. Struct. 23(12), 1544–1555 (2001)

    Article  Google Scholar 

  16. Zalka, K.A.: A simple method for the deflection analysis of tall wall-frame building structures under horizontal load. Struct. Des. Tall Spec. Build. 18(3), 291–311 (2009)

    Article  Google Scholar 

  17. Zalka, K.A.: Maximum deflection of asymmetric wall-frame buildings under horizontal load. Period. Polytech. Civ. Eng. 58(4), 387 (2014)

    Article  Google Scholar 

  18. Zalka, K.A.: Buckling analysis of buildings braced by frameworks, shear walls and cores. Struct. Des. Tall Spec. Build. 11(3), 197–219 (2002)

    Article  Google Scholar 

  19. Zalka, K.A.: Mode coupling in the torsional-flexural buckling of regular multistorey buildings. Struct. Des. Tall Spec. Build. 3(4), 227–245 (1994)

    Article  MathSciNet  Google Scholar 

  20. Zalka, K.A.: Global Structural Analysis of Buildings. CRC Press, Boca Raton (2002)

    Google Scholar 

  21. Potzta, G., Kollár, L.P.: Analysis of building structures by replacement sandwich beams. Int. J. Solids Struct. 40(3), 535–553 (2003)

    Article  MATH  Google Scholar 

  22. Piccardo, G., Tubino, F., Luongo, A.: A shear-shear torsional beam model for nonlinear aeroelastic analysis of tower buildings. Z. Angew. Math. Phys. 66(4), 1895–1913 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Piccardo, G., Tubino, F., Luongo, A.: Equivalent nonlinear beam model for the 3-d analysis of shear-type buildings: Application to aeroelastic instability. Int. J. Non-Linear Mech. 80, 52–65 (2016)

    Article  ADS  Google Scholar 

  24. Piccardo, G., Tubino, F., Luongo, A.: Equivalent timoshenko linear beam model for the static and dynamic analysis of tower buildings. Appl. Math. Model., Submitted (2017)

  25. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berrehili, Y., Marigo, J.-J.: The homogenized behavior of unidirectional fiber-reinforced composite materials in the case of debonded fibers. Math. Mech. Complex Syst. 2(2), 181–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giorgio, I., Della Corte, A., dell’Isola, F.: Dynamics of 1d nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)

    Article  Google Scholar 

  30. Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473, 20170636 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional elastica in large deformation as \(\varGamma \)-limit of a discrete 1d mechanical system. Z. Angew. Math. Phys. 68(2), 42 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Alibert, J.-J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chatzigeorgiou, G., Javili, A., Steinmann, P.: Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math. Mech. Solids 19(2), 193–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Super-hydrodynamic limit in interacting particle systems. J. Stat. Phys. 155(5), 867–887 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley, Hoboken (2013)

    Book  Google Scholar 

  37. Antman, S.S.: The theory of rods. In: Linear Theories of Elasticity and Thermoelasticity, pp 641–703. Springer (1973)

  38. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  39. Capriz, G.: A contribution to the theory of rods. Riv. Mat. Univ. Parma 7(4), 489–506 (1981)

    MathSciNet  MATH  Google Scholar 

  40. Lacarbonara, W.: Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  41. Altenbach, H., Bîrsan, M., Eremeyev V.A.: Cosserat-type rods. In: Generalized Continua from the Theory to Engineering Applications, pp. 179–248. Springer (2013)

  42. Pignataro, M., Rizzi, N., Luongo, A.: Bifurcation, Stability and Postcritical Behaviour of Elastic Structures. Elsevier, Amsterdam (1990)

    Google Scholar 

  43. Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Angelo Luongo for his many insightful suggestions and for his kind support throughout the progress of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferretti.

Additional information

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, M. Flexural torsional buckling of uniformly compressed beam-like structures. Continuum Mech. Thermodyn. 30, 977–993 (2018). https://doi.org/10.1007/s00161-018-0627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0627-9

Keywords

Navigation