Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 553–572 | Cite as

A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries

  • Tao Zhang
  • Marc Kamlah
Original Article

Abstract

A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn–Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics\(^{\circledR }\) for a spherically symmetric boundary value problem of lithium insertion into a \(\hbox {Li}_x\hbox {Mn}_2\hbox {O}_4\) cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for \(\hbox {Li}_x\hbox {Mn}_2\hbox {O}_4\), and the interface evolution is studied. Comparison to the Cahn–Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn–Hilliard theory.

Keywords

Nonlocality Phase-field approach Phase segregation Interface Lithium ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arndt, M., Griebel, M., Roubicek, T.: Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Therm. 15(5), 463–485 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brandon, D., Lin, T., Rogers, R.C.: Phase transitions and hysteresis in nonlocal and order-parameter models. Meccanica 30(5), 541–565 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandon, D., Rogers, R.: The coercivity paradox and nonlocal ferromagnetism. Continuum Mech. Therm. 4(1), 1–21 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandon, D., Rogers, R.C.: Nonlocal superconductivity. Z. Angew. Math. Phys. 45(1), 135–152 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)ADSCrossRefGoogle Scholar
  6. 6.
    Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153(6), A1019–A1030 (2006)CrossRefGoogle Scholar
  7. 7.
    Cogswell, D.A., Bazant, M.Z.: Coherency strain and the kinetics of phase separation in \(\text{ LiFePO }_4\) nanoparticles. ACS Nano 6(3), 2215–2225 (2012)CrossRefGoogle Scholar
  8. 8.
    Comsol Multiphysics Reference Manual, version 4.4. COMSOL Inc, https://www.comsol.com
  9. 9.
    Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Efendiev, M., Miranville, A.: New models of Cahn–Hilliard–Gurtin equations. Continuum Mech. Therm. 16(5), 441–451 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fosdick, R.L., Mason, D.E.: Single phase energy minimizers for materials with nonlocal spatial dependence. Quart. Appl. Math. 54(1), 161–195 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fosdick, R.L., Mason, D.E.: On a model of nonlocal continuum mechanics part I: existence and regularity. SIAM J. Appl. Math. 58(4), 1278–1306 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gajewski, H., Zacharias, K.: On a nonlocal phase separation model. J. Math. Anal. Appl. 286(1), 11–31 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)CrossRefzbMATHGoogle Scholar
  15. 15.
    Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87(1), 37–61 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92(3–4), 178–192 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Han, B., Van der Ven, A., Morgan, D., Ceder, G.: Electrochemical modeling of intercalation processes with phase field models. Electrochim. Acta 49(26), 4691–4699 (2004)CrossRefGoogle Scholar
  19. 19.
    Huttin, M.: Ph.D. Thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT) (2014)Google Scholar
  20. 20.
    Huttin, M., Kamlah, M.: Phase-field modeling of stress generation in electrode particles of lithium ion batteries. Appl. Phys. Lett. 101(13), 133902 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Lin, T., Rogers, R.: On an order-parameter model for a binary liquid. Comput. Mater. Sci. 4(2), 159–171 (1995)CrossRefGoogle Scholar
  22. 22.
    Peerlings, R., Geers, M., De Borst, R., Brekelmans, W.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44), 7723–7746 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rogers, R.: A nonlocal model for the exchange energy in ferromagnetic materials. J. Integral Equ. Appl. 3(1), 85–127 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rogers, R.C.: Some remarks on nonlocal interactions and hysteresis in phase transitions. Continuum Mech. Therm. 8(1), 65–73 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Roubíček, T.: Approximation in multiscale modelling of microstructure evolution in shape-memory alloys. Continuum Mech. Therm. 23(6), 491–507 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Trinh, B., Hackl, K.: A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior. Continuum Mech. Therm. 26(4), 551–562 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Truskinovsky, L., Vainchtein, A.: Quasicontinuum models of dynamic phase transitions. Continuum Mech. Therm. 18(1), 1–21 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Truskinovsky, L., Vainchtein, A.: Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia. Continuum Mech. Therm. 20(2), 97–122 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ubachs, R., Schreurs, P., Geers, M.: A nonlocal diffuse interface model for microstructure evolution of tin-lead solder. J. Mech. Phys. Solids 52(8), 1763–1792 (2004)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Van der Ven, A., Marianetti, C., Morgan, D., Ceder, G.: Phase transformations and volume changes in spinel \(\text{ Li }_{x}\text{ Mn }_{2}\text{ O }_{4}\). Solid State Ion. 135(1), 21–32 (2000)Google Scholar
  31. 31.
    Walk, A.C., Huttin, M., Kamlah, M.: Comparison of a phase-field model for intercalation induced stresses in electrode particles of lithium ion batteries for small and finite deformation theory. Eur. J. Mech. A 48, 74–82 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Walter, J.W.: Ph.D. Thesis, University of Minnesota (1985)Google Scholar
  33. 33.
    Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn–Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230(15), 6037–6060 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yamada, A., Koizumi, H., Nishimura, S., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., Kobayashi, Y.: Room-temperature miscibility gap in \(\text{ Li }_{x}\text{ FePO }_{4}\). Nat. Mater. 5(5), 357–360 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Applied MaterialsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations