Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 529–551 | Cite as

Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics

  • Zineeddine Louna
  • Ibrahim Goda
  • Jean-François Ganghoffer
Original Article
  • 74 Downloads

Abstract

We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.

Keywords

Bone remodeling Surface growth Effective growth model Irreversible thermodynamics Micromechanics FE simulations 

List of symbols

\(\mathbf{C}\)

Tensor of effective elastic moduli

\(\overline{\mathbf{D}} \)

Average rate of deformation tensor

\(\overline{\mathbf{D}} _\mathrm{e} \)

Average elastic rate of deformation tensor

\(\overline{\mathbf{D}} _\mathrm{g} \)

Average rate of growth tensor

\(\mathbf{E}\left( x \right) \)

Average kinematic first gradient tensors

\(E_x,E_y\)

Effective homogenized moduli in x, y, respectively

\({\varvec{\varepsilon }}\)

Classical infinitesimal strain tensor

\(\overline{{{\varvec{\upvarepsilon }} }_\mathrm{e} } ,\overline{{{\varvec{\upvarepsilon }}}_\mathrm{g}}\)

A average elastic and growth tensors (small strain)

\(\mathbf{f}_{\mathrm{S}} \)

Surface force field

\({\tilde{\mathbf{F}}}\)

Surface deformation gradient

\({\tilde{\mathbf{F}}}_\mathbf{a}\)

Surface accommodation mapping

\({\tilde{\mathbf{F}}}_{\mathrm{g}}\)

Surface growth mapping

\(\mathbf{g}_\mathrm{a} \)

Acceleration due to gravity

\(\mathbf{I}_\mathrm{S} \)

Surface identity tensor

J

Jacobean of the total deformation gradient

\(\tilde{J}_{\mathrm{a}}, \tilde{J}_{\mathrm{g}}\)

Determinants of the accommodation and growth tensors

\({J}_{1}, {J}_{2}\),

First and second invariants of the applied stress

\(\mathbf{K}\)

Curvature tensor of the surface

\(\tilde{K}\)

Constant measuring the rate of surface adaptation

\(\overline{\mathbf{L}} _\mathrm{g} \)

Average growth velocity gradient

\(\mathbf{N}\)

Unit normal vector

\(\overline{{\dot{p}}} _\mathrm{g} \)

Effective growth strain rate (second invariant of \(\overline{\mathbf{D}} _\mathrm{g} )\)

\({R}_{\mathrm{g}}\)

Isotropic hardening

\({\tilde{\mathbf{T}}}\)

Surface nominal stress

\(\mathbf{u}=\left( {u_x ,u_y } \right) \)

Displacement vector in 2D

\(U_{{\mathrm{RUC}}}\)

Strain energy over the unit cell

\(V_{{\mathrm{RUC}}} =\left| \Omega \right| \)

Volume of the RUC

\(\mathbf{V}\)

Total velocity field

\({\tilde{\mathbf{V}}}_{\mathrm{g}} \)

Surface growth velocity field

\(v_{xy},v_{yx}\)

In-plane effective Poisson’s ratios

\(W^{\mathrm{S}}\)

Surface energy density

\(\mathbf{X}_{\mathrm{g}}\)

Growth position

\(\varphi ^{*}\)

Dissipation potential

\(\rho _{\mathrm{S}} \)

Surface density of nutrients

\({r\rho }^{\mathrm{eff}}\)

Effective density

\(\dot{\rho }^{\mathrm{eff}}\)

Rate of effective density

\(\sigma ^{\mathrm{eq}}\)

Equivalent stress

\({{\varvec{\upsigma }} }^{\mathrm{ext}}\)

Applied stress tensor

\(\sigma ^{\mathrm{g}}\)

Growth threshold corresponding to the minimal effective stress

\(\tilde{{\varvec{\Sigma }}}_{a}\)

Surface Eshelby stress

\(\Gamma ^{{\mathrm{S}}}\)

Rate of mass surface growth

\(\Omega _{\mathrm{g}} \)

The scalar growth potential

\(\alpha ,\beta ,K,N\)

Four material parameters of the constitutive growth model

\(\psi _\mathrm{e} \)

Elastic part of the free energy density

\(\psi _\mathrm{g} \)

Growth part of the free energy density

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brynk, T., Hellmich, C., Fritsch, A., Zysset, P., Eberhardsteiner, J.: Experimental poromechanics of trabecular bone strength: role of Terzaghi’s effective stress and of tissue level stress fluctuations. J. Biomech. 44(3), 501–8 (2010)CrossRefGoogle Scholar
  3. 3.
    Carter, D.R.: Mechanical loading histories and cortical bone remodeling. Calcif. Tissue Int. 36(Suppl 1), S19S24 (1984)Google Scholar
  4. 4.
    Carter, D., Hayes, W.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59, 954–962 (1977)CrossRefGoogle Scholar
  5. 5.
    Cowin, S., Van Buskirk, W.C.: Surface bone remodeling induced by a medullary pin. J. Biomech. 12(4), 269–76 (1979)CrossRefGoogle Scholar
  6. 6.
    Cowin, S.C., Hegedus, D.H.: Bone remodeling I: theory of adaptive elasticity. J. Elast. 6, 313–325 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crockett, J.C., Rogers, M.J., Coxon, F.P., Hocking, L.J., Helfrich, M.H.: Bone remodeling at a glance. J. Cell Sci. 124, 991–998 (2011)CrossRefGoogle Scholar
  8. 8.
    Drozdov, A.D.: Volumetric growth of viscoelastic solids. Mech. Solids 25, 99–106 (1990)Google Scholar
  9. 9.
    Entov, V.M.: Mechanical model of scoliosis. Mech. Solids 18, 199–206 (1983)Google Scholar
  10. 10.
    Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation—part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Ganghoffer, J.F.: A contribution to the mechanics and thermodynamics of surface growth, application to bone remodeling. Int. J. Eng. Sci. 50(1), 166–191 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ganghoffer, J.F.: A kinematically and thermodynamically consistent volumetric growth model based on the stress-free configuration. Int. J. Solids Struct. 50, 3446–3459 (2013)CrossRefGoogle Scholar
  14. 14.
    Ganghoffer, J.F., Haussy, B.: Mechanical modeling of growth considering domain variation. Part I: Constitutive framework. Int. J. Solids Struct. 42(15), 4311–4337 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ganghoffer, J.F., Sokolowski, J.: A micromechanical approach to volumetric and surface growth in the framework of shape optimization. Int. J. Eng. Sci. 74, 207–226 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goda, I., Ganghoffer, J.F.: Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures. J. Mech. Behav. Biomed. Mater. 51, 99–118 (2015)CrossRefGoogle Scholar
  17. 17.
    Goda, I., Ganghoffer, J.F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94–95, 138–157 (2016)CrossRefGoogle Scholar
  18. 18.
    Goda, I., Rahouadj, R., Ganghoffer, J.-F., Kerdjoudj, H., Siad, L.: 3D couple-stress moduli of porous polymeric biomaterials using \(\mu \)CT image stack and FE characterization. Int. J. Eng. Sci. 100, 25–44 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hadjidakis, D.J., Androulakis, I.I.: Bone remodeling. Ann. N. Y. Acad. Sci. 1092, 385–396 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Halgrin, J., Chaari, F., Markiewicz, É.: On the effect of marrow in the mechanical behavior and crush response of trabecular bone. J. Mech. Behav. Biomed. Mater. 5, 231–237 (2012)CrossRefGoogle Scholar
  21. 21.
    Hellmich, C., Ulm, F.: Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation. Transp. Porous Media 58, 243–268 (2005)CrossRefGoogle Scholar
  22. 22.
    Hill, R.: Elastic properties of reinforced solids: some theoretical considerations. J. Mech. Phys. Solids 11, 357–372 (1963)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Hsu, F.-H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–311 (1968)CrossRefGoogle Scholar
  24. 24.
    Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Khosla, S., Westendorf, J.J., Oursler, M.J.: Oursler Building bone to reverse osteoporosis and repair fractures. J. Clin. Investig. 118, 421–428 (2008)CrossRefGoogle Scholar
  26. 26.
    Lacroix, D.: Computational methods in the modeling of scaffolds for tissue engineering. In: Geris, L. (ed.) Computational Modeling in Tissue Engineering, pp. 107–126. Springer, Berlin (2013)Google Scholar
  27. 27.
    Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod, Paris (2009)Google Scholar
  28. 28.
    Linde, F., Hvid, I., Madsen, F.: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J. Biomech. 25(4), 359–368 (1992)CrossRefGoogle Scholar
  29. 29.
    Louna, Z., Goda, I., Ganghoffer, J.F., Benhadid, S.: Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch. Appl. Mech. 87(3), 457–477 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)CrossRefzbMATHGoogle Scholar
  31. 31.
    McNamara, L.M., Prendergast, P.J.: Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40, 1381–1391 (2007)CrossRefGoogle Scholar
  32. 32.
    Morgan, E., Keaveny, T.: Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34, 569–577 (2001)CrossRefGoogle Scholar
  33. 33.
    Olivares, L., Lacroix, D.: Computational methods in the modeling of scaffolds for tissue engineering. In: Geris, L. (ed.) Computational Modeling in Tissue Engineering, pp. 107–126. Springer, Berlin (2013)Google Scholar
  34. 34.
    Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27, 1067–1076 (1994)CrossRefGoogle Scholar
  35. 35.
    Raisz, L.G.: Physiology and pathophysiology of bone remodeling. Clin. Chem. 45, 1353–1358 (1999)Google Scholar
  36. 36.
    Rajagopal, K.R.: Multiple natural configurations in continuum mechanics. Report 6, Institute Computational and Applied Mechanics (1995)Google Scholar
  37. 37.
    Rajagopal, K.R., Srinivasa, A.R.: Mechanics of the inelastic behavior of materials. Part I: theoretical underpinnings. Int. J. Plast. 14, 945–967 (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Rodriguez, E.K., Hoger, A., McCullogh, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)CrossRefGoogle Scholar
  39. 39.
    Skalak, R.: Growth as a finite displacement field. In: Carlsson, D.E., Shield, R.T. (eds.) Proceedings of the IUTAM Symposium on Finite Elasticity, Martinus Nijhoff, The Hague, pp. 347–355 (1981)Google Scholar
  40. 40.
    Skalak, R., Farrow, D.A., Hoger, A.: Kinematics of surface growth. J. Math. Biol. 35, 869–907 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Stein, A.A.: The deformation of a rod of growing biological material under longitudinal compression. J. Appl. Math. Mech. 59, 139–146 (1995)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    Thompson, D.W.: On Growth and Form, 2nd edn. Dover, Mineola (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zineeddine Louna
    • 1
  • Ibrahim Goda
    • 2
    • 3
  • Jean-François Ganghoffer
    • 4
  1. 1.LMFTA, Faculté de physiqueUSTHBBab Ezzouar, AlgiersAlgeria
  2. 2.LPMTUniversité de Haute-AlsaceMulhouse CedexFrance
  3. 3.Department of Industrial Engineering, Faculty of EngineeringFayoum UniversityFayoumEgypt
  4. 4.LEM3 - Université de Lorraine and CNRS. 7MetzFrance

Personalised recommendations