Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 3, pp 485–507 | Cite as

An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

  • A. Nateghi
  • H. Dal
  • M.-A. Keip
  • C. Miehe
Original Article

Abstract

Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress–strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

Keywords

Strain-induced crystallization Rubbers Network models Micromechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The financial support of the German Research Foundation (DFG) in the framework of project Mi 295/13-2 and the Cluster of Excellence EXC 310 Simulation Technology is gratefully acknowledged.

References

  1. 1.
    Acken, M.F., Singer, W.E., Davey, W.P.: X-ray study of rubber structure. Rubber Chem. Technol. 5(1), 30–38 (1932)CrossRefGoogle Scholar
  2. 2.
    Ahzi, S., Makradi, A., Gregory, R., Edie, D.: Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35(12), 1139–1148 (2003)CrossRefGoogle Scholar
  3. 3.
    Andrews, E.H.: Crystalline morphology in thin films of natural rubber. II. Crystallization under strain. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 277(1371), 562–570 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biot, M.A.: Mechanics of Incremental Deformations. Wiley, London (1965)Google Scholar
  6. 6.
    Brüning, K., Schneider, K., Roth, S.V., Heinrich, G.: Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45, 7914–7919 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Chenal, J.M., Chazeau, L., Guy, L., Bomal, Y., Gauthier, C.: Molecular weight between physical entanglements in natural rubber: a critical parameter during strain-induced crystallization. Polymer 48, 1042–1046 (2007)CrossRefGoogle Scholar
  8. 8.
    Chevalier, L., Marco, Y.: Identification of a strain induced crystallisation model for PET under uni- and bi-axial loading: influence of temperature dispersion. Mech. Mater. 39(6), 596–609 (2007)CrossRefGoogle Scholar
  9. 9.
    Cohen, A.: A Padé approximant to the inverse Langevin function. Rheol. Acta 30, 270–273 (1991)CrossRefGoogle Scholar
  10. 10.
    Dal, H., Zopf, C., Kaliske, M.: Micro-sphere based viscoplastic constitutive model for uncured green rubber. Int. J. Solids Struct. (2017). https://doi.org/10.1016/j.ijsolstr.2017.09.013
  11. 11.
    Dargazany, R., Khiêm, V.-U., Poshtan, E.-A., Itskov, M.: Constitutive modeling of strain-induced crystallization in filled rubbers. Phys. Rev. E 89, 022604 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Dunning, D.J., Pennells, P.J.: Effect of strain on rate of crystallization of natural rubber. Rubber Chem. Technol. 40(5), 1381–1393 (1967)CrossRefGoogle Scholar
  13. 13.
    Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39(1), 39–52 (2007)CrossRefGoogle Scholar
  14. 14.
    Dupaix, R.B., Krishnan, D.: A constitutive model for strain-induced crystallization in poly (ethylene terephthalate)(PET) during finite strain load-hold simulations. J. Eng. Mater. Technol. 128(1), 28–33 (2006)CrossRefGoogle Scholar
  15. 15.
    Flory, P.J.: Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching. J. Chem. Phys. 15, 397–408 (1947)ADSCrossRefGoogle Scholar
  16. 16.
    Gent, A.: Crystallization and the relaxation of stress in stretched natural rubber vulcanizates. Trans. Faraday Soc. 50, 521–533 (1954)CrossRefGoogle Scholar
  17. 17.
    Gent, A.N., Kawahara, S., Zhao, J.: Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene. Rubber Chem. Technol. 71(4), 668–678 (1998)CrossRefGoogle Scholar
  18. 18.
    Guilie, J., Le, T.-N., Le Tallec, P.: Micro-sphere model for strain-induced crystallisation and three-dimensional applications. J. Mech. Phys. Solids 81, 58–74 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Halphen, B., Nguyen, Q.S.: Sur les matériaux standard généralisés. J. Mécanique 14, 39–63 (1975)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hildebrand, F.: Variational multifield modeling of the formation and evolution of laminate microstructure. Ph.D. Thesis, University of Stuttgart (2013)Google Scholar
  21. 21.
    Huneau, B.: Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84, 425–452 (2011)CrossRefGoogle Scholar
  22. 22.
    James, H.M., Guth, E.: Theory of elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943)ADSCrossRefGoogle Scholar
  23. 23.
    Katz, J.: Was sind die Ursachen der eigentümlichen Dehnbarkeit des Kautschuks? Kolloid Z. 36, 300–307 (1925)CrossRefGoogle Scholar
  24. 24.
    Kawai, H.: Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol. Acta 14(1), 27–47 (1975)CrossRefGoogle Scholar
  25. 25.
    Kroon, M.: A constitutive model for strain-crystallising rubber-like materials. Mech. Mater. 42, 873–885 (2010)CrossRefGoogle Scholar
  26. 26.
    Kuhn, W., Grün, F.: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid Z. 101, 248–271 (1942)CrossRefGoogle Scholar
  27. 27.
    Luch, D., Yeh, G.S.Y.: Morphology of strain-induced crystallization of natural rubber. Part II. X-ray studies on cross-linked vulcanizates. J. Macromol. Sci. Part B Phys. 7(1), 121–155 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    Magill, J.H.: Crystallization and morphology of rubber. Rubber Chem. Technol. 68(3), 507–539 (1995)CrossRefGoogle Scholar
  29. 29.
    Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials-Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Methods Eng. 37(12), 1981–2004 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mistry, S.J., Govindjee, S.: A micro-mechanically based continuum model for strain-induced crystallization in natural rubber. Int. J. Solids Struct. 51, 530–539 (2014)CrossRefGoogle Scholar
  33. 33.
    Mitchell, G.R.: A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 25, 1562–1572 (1984)CrossRefGoogle Scholar
  34. 34.
    Mitchell, J.C., Meier, D.J.: Rapid stress-induced crystallization in natural rubber. J. Polym. Sci. Part A-2 Polym. Phys. 6(10), 1689–1703 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: I. The theoretical structure. Int. J. Solids Struct. 37(20), 2777–2789 (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: II. Elementary thermodynamic properties. Int. J. Solids Struct. 37, 2791–2809 (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: III. Mechanical properties. Int. J. Solids Struct. 37(20), 2811–2824 (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    Phillips, A.W., Bhatia, A., Zhu, P.-W., Edward, G.: Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules 44(9), 3517–3528 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Poompradub, S., Tosaka, M., Kohjiya, S., Ikeda, Y., Toki, S., Sics, I., Hsiao, B.S.: Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J. Appl. Phys. 97, 103529 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Rao, I.: Effect of the rate of deformation on the crystallization behavior of polymers. Int. J. Non-Linear Mech. 38(5), 663–676 (2003)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Rao, I., Rajagopal, K.: A study of strain-induced crystallization of polymers. Int. J. Solids Struct. 38(6), 1149–1167 (2001)CrossRefzbMATHGoogle Scholar
  42. 42.
    Rault, J., Marchal, J., Judeinstein, P., Albouy, P.A.: Stress-induced crystallization and reinforcement in filled natural rubbers:2H NMR study. Macromolecules 39, 8356–8368 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Reichert, W.F., Hopfenmüller, M.K., Göritz, D.: Volume change and gas transport at uniaxial deformation of filled natural rubber. J. Mater. Sci. 22(10), 3470–3476 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  45. 45.
    Sanders, J.F., Ferry, J.D., Valentine, R.H.: Viscoelastic properties of 1,2-polybutadiene-comparison with natural rubber and other elastomers. J. Polym. Sci. Part A-2 Polym. Phys. 6(5), 967–980 (1968)ADSCrossRefGoogle Scholar
  46. 46.
    Shimizu, T., Tosaka, M., Tsuji, M., Kohjiya, S.: TEM observation of natural rubber thin films crystallized under molecular orientation. Rubber Chem. Technol. 73(5), 926–936 (2000)CrossRefGoogle Scholar
  47. 47.
    Somani, R.H., Yang, L., Zhu, L., Hsiao, B.S.: Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20), 8587–8623 (2005)CrossRefGoogle Scholar
  48. 48.
    Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B.S.: Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. Polymer 44, 6003–6011 (2003)CrossRefGoogle Scholar
  49. 49.
    Toki, S., Sics, I., Hsiao, B.S., Tosaka, M., Poompradub, S., Ikeda, Y., Kohjiya, S.: Probing the nature of strain-induced crystallization in polyisoprene rubber by combined thermomechanical and in situ X-ray diffraction techniques. Macromolecules 38, 7064–7073 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B.S., Murakami, S., Tosaka, M., Kohjiya, S., Poompradub, S., Ikeda, Y., Tsous, A.H.: Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study. Rubber Chem. Technol. 77(2), 317–335 (2004)CrossRefGoogle Scholar
  51. 51.
    Tosaka, M.: Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polym. J. 39, 1207–1220 (2007)CrossRefGoogle Scholar
  52. 52.
    Tosaka, M.: A route for the thermodynamic description of strain-induced crystallization in sulfur-cured natural rubber. Macromolecules 42(16), 6166–6174 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Tosaka, M., Kawakami, D., Senoo, K., Kohjiya, S., Ikeda, Y., Toki, S., Hsiao, B.S.: Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39(15), 5100–5105 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    Tosaka, M., Senoo, K., Kohjiya, S., Ikeda, Y.: Crystallization of stretched network chains in cross-linked natural rubber. J. Appl. Phys. 101(8), 084909 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Tosaka, M., Senoo, K., Sato, K., Noda, M., Ohta, N.: Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene. Polymer 53(3), 864–872 (2012)CrossRefGoogle Scholar
  56. 56.
    Trabelsi, S., Albouy, P.A., Rault, J.: Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 36, 7624–7639 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford (1975)zbMATHGoogle Scholar
  58. 58.
    Treloar, L.R.G., Riding, G.: A non-Gaussian theory of rubber in biaxial strain. I. Mechanical properties. Proc. R. Soc. Lond. A 369, 261–280 (1979)ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    Wood, L.A., Bekkedahl, N.: Crystallization of unvulcanized rubber at different temperatures. J. Appl. Phys. 17, 362–375 (1946)ADSCrossRefGoogle Scholar
  60. 60.
    Wu, P.D., van der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    Yeh, G.S.Y.: Strain-induced crystallization II. Subsequent fibrillar-to-lamellar transformation. Polym. Eng. Sci. 16(3), 145–151 (1976)CrossRefGoogle Scholar
  62. 62.
    Ziegler, H., Wehrli, C.: The derivation of constitutive relations from the free energy and the dissipation function. Adv. Appl. Mech. 25, 183–238 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Mechanics, Chair IUniversity of StuttgartStuttgartGermany
  2. 2.Department of Mechanical EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations