Skip to main content
Log in

An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress–strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acken, M.F., Singer, W.E., Davey, W.P.: X-ray study of rubber structure. Rubber Chem. Technol. 5(1), 30–38 (1932)

    Article  Google Scholar 

  2. Ahzi, S., Makradi, A., Gregory, R., Edie, D.: Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35(12), 1139–1148 (2003)

    Article  Google Scholar 

  3. Andrews, E.H.: Crystalline morphology in thin films of natural rubber. II. Crystallization under strain. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 277(1371), 562–570 (1964)

    Article  ADS  Google Scholar 

  4. Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, London (1965)

    Google Scholar 

  6. Brüning, K., Schneider, K., Roth, S.V., Heinrich, G.: Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45, 7914–7919 (2012)

    Article  ADS  Google Scholar 

  7. Chenal, J.M., Chazeau, L., Guy, L., Bomal, Y., Gauthier, C.: Molecular weight between physical entanglements in natural rubber: a critical parameter during strain-induced crystallization. Polymer 48, 1042–1046 (2007)

    Article  Google Scholar 

  8. Chevalier, L., Marco, Y.: Identification of a strain induced crystallisation model for PET under uni- and bi-axial loading: influence of temperature dispersion. Mech. Mater. 39(6), 596–609 (2007)

    Article  Google Scholar 

  9. Cohen, A.: A Padé approximant to the inverse Langevin function. Rheol. Acta 30, 270–273 (1991)

    Article  Google Scholar 

  10. Dal, H., Zopf, C., Kaliske, M.: Micro-sphere based viscoplastic constitutive model for uncured green rubber. Int. J. Solids Struct. (2017). https://doi.org/10.1016/j.ijsolstr.2017.09.013

  11. Dargazany, R., Khiêm, V.-U., Poshtan, E.-A., Itskov, M.: Constitutive modeling of strain-induced crystallization in filled rubbers. Phys. Rev. E 89, 022604 (2014)

    Article  ADS  Google Scholar 

  12. Dunning, D.J., Pennells, P.J.: Effect of strain on rate of crystallization of natural rubber. Rubber Chem. Technol. 40(5), 1381–1393 (1967)

    Article  Google Scholar 

  13. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39(1), 39–52 (2007)

    Article  Google Scholar 

  14. Dupaix, R.B., Krishnan, D.: A constitutive model for strain-induced crystallization in poly (ethylene terephthalate)(PET) during finite strain load-hold simulations. J. Eng. Mater. Technol. 128(1), 28–33 (2006)

    Article  Google Scholar 

  15. Flory, P.J.: Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching. J. Chem. Phys. 15, 397–408 (1947)

    Article  ADS  Google Scholar 

  16. Gent, A.: Crystallization and the relaxation of stress in stretched natural rubber vulcanizates. Trans. Faraday Soc. 50, 521–533 (1954)

    Article  Google Scholar 

  17. Gent, A.N., Kawahara, S., Zhao, J.: Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene. Rubber Chem. Technol. 71(4), 668–678 (1998)

    Article  Google Scholar 

  18. Guilie, J., Le, T.-N., Le Tallec, P.: Micro-sphere model for strain-induced crystallisation and three-dimensional applications. J. Mech. Phys. Solids 81, 58–74 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Halphen, B., Nguyen, Q.S.: Sur les matériaux standard généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Hildebrand, F.: Variational multifield modeling of the formation and evolution of laminate microstructure. Ph.D. Thesis, University of Stuttgart (2013)

  21. Huneau, B.: Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84, 425–452 (2011)

    Article  Google Scholar 

  22. James, H.M., Guth, E.: Theory of elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943)

    Article  ADS  Google Scholar 

  23. Katz, J.: Was sind die Ursachen der eigentümlichen Dehnbarkeit des Kautschuks? Kolloid Z. 36, 300–307 (1925)

    Article  Google Scholar 

  24. Kawai, H.: Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol. Acta 14(1), 27–47 (1975)

    Article  Google Scholar 

  25. Kroon, M.: A constitutive model for strain-crystallising rubber-like materials. Mech. Mater. 42, 873–885 (2010)

    Article  Google Scholar 

  26. Kuhn, W., Grün, F.: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid Z. 101, 248–271 (1942)

    Article  Google Scholar 

  27. Luch, D., Yeh, G.S.Y.: Morphology of strain-induced crystallization of natural rubber. Part II. X-ray studies on cross-linked vulcanizates. J. Macromol. Sci. Part B Phys. 7(1), 121–155 (1973)

    Article  ADS  Google Scholar 

  28. Magill, J.H.: Crystallization and morphology of rubber. Rubber Chem. Technol. 68(3), 507–539 (1995)

    Article  Google Scholar 

  29. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials-Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Methods Eng. 37(12), 1981–2004 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mistry, S.J., Govindjee, S.: A micro-mechanically based continuum model for strain-induced crystallization in natural rubber. Int. J. Solids Struct. 51, 530–539 (2014)

    Article  Google Scholar 

  33. Mitchell, G.R.: A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 25, 1562–1572 (1984)

    Article  Google Scholar 

  34. Mitchell, J.C., Meier, D.J.: Rapid stress-induced crystallization in natural rubber. J. Polym. Sci. Part A-2 Polym. Phys. 6(10), 1689–1703 (1968)

    Article  ADS  Google Scholar 

  35. Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: I. The theoretical structure. Int. J. Solids Struct. 37(20), 2777–2789 (2000)

    Article  MATH  Google Scholar 

  36. Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: II. Elementary thermodynamic properties. Int. J. Solids Struct. 37, 2791–2809 (2000)

    Article  MATH  Google Scholar 

  37. Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: III. Mechanical properties. Int. J. Solids Struct. 37(20), 2811–2824 (2000)

    Article  MATH  Google Scholar 

  38. Phillips, A.W., Bhatia, A., Zhu, P.-W., Edward, G.: Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules 44(9), 3517–3528 (2011)

    Article  ADS  Google Scholar 

  39. Poompradub, S., Tosaka, M., Kohjiya, S., Ikeda, Y., Toki, S., Sics, I., Hsiao, B.S.: Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J. Appl. Phys. 97, 103529 (2005)

    Article  ADS  Google Scholar 

  40. Rao, I.: Effect of the rate of deformation on the crystallization behavior of polymers. Int. J. Non-Linear Mech. 38(5), 663–676 (2003)

    Article  ADS  MATH  Google Scholar 

  41. Rao, I., Rajagopal, K.: A study of strain-induced crystallization of polymers. Int. J. Solids Struct. 38(6), 1149–1167 (2001)

    Article  MATH  Google Scholar 

  42. Rault, J., Marchal, J., Judeinstein, P., Albouy, P.A.: Stress-induced crystallization and reinforcement in filled natural rubbers:2H NMR study. Macromolecules 39, 8356–8368 (2006)

    Article  ADS  Google Scholar 

  43. Reichert, W.F., Hopfenmüller, M.K., Göritz, D.: Volume change and gas transport at uniaxial deformation of filled natural rubber. J. Mater. Sci. 22(10), 3470–3476 (1987)

    Article  ADS  Google Scholar 

  44. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)

    MATH  Google Scholar 

  45. Sanders, J.F., Ferry, J.D., Valentine, R.H.: Viscoelastic properties of 1,2-polybutadiene-comparison with natural rubber and other elastomers. J. Polym. Sci. Part A-2 Polym. Phys. 6(5), 967–980 (1968)

    Article  ADS  Google Scholar 

  46. Shimizu, T., Tosaka, M., Tsuji, M., Kohjiya, S.: TEM observation of natural rubber thin films crystallized under molecular orientation. Rubber Chem. Technol. 73(5), 926–936 (2000)

    Article  Google Scholar 

  47. Somani, R.H., Yang, L., Zhu, L., Hsiao, B.S.: Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20), 8587–8623 (2005)

    Article  Google Scholar 

  48. Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B.S.: Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. Polymer 44, 6003–6011 (2003)

    Article  Google Scholar 

  49. Toki, S., Sics, I., Hsiao, B.S., Tosaka, M., Poompradub, S., Ikeda, Y., Kohjiya, S.: Probing the nature of strain-induced crystallization in polyisoprene rubber by combined thermomechanical and in situ X-ray diffraction techniques. Macromolecules 38, 7064–7073 (2005)

    Article  ADS  Google Scholar 

  50. Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B.S., Murakami, S., Tosaka, M., Kohjiya, S., Poompradub, S., Ikeda, Y., Tsous, A.H.: Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study. Rubber Chem. Technol. 77(2), 317–335 (2004)

    Article  Google Scholar 

  51. Tosaka, M.: Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polym. J. 39, 1207–1220 (2007)

    Article  Google Scholar 

  52. Tosaka, M.: A route for the thermodynamic description of strain-induced crystallization in sulfur-cured natural rubber. Macromolecules 42(16), 6166–6174 (2009)

    Article  ADS  Google Scholar 

  53. Tosaka, M., Kawakami, D., Senoo, K., Kohjiya, S., Ikeda, Y., Toki, S., Hsiao, B.S.: Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39(15), 5100–5105 (2006)

    Article  ADS  Google Scholar 

  54. Tosaka, M., Senoo, K., Kohjiya, S., Ikeda, Y.: Crystallization of stretched network chains in cross-linked natural rubber. J. Appl. Phys. 101(8), 084909 (2007)

    Article  ADS  Google Scholar 

  55. Tosaka, M., Senoo, K., Sato, K., Noda, M., Ohta, N.: Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene. Polymer 53(3), 864–872 (2012)

    Article  Google Scholar 

  56. Trabelsi, S., Albouy, P.A., Rault, J.: Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 36, 7624–7639 (2003)

    Article  ADS  Google Scholar 

  57. Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  58. Treloar, L.R.G., Riding, G.: A non-Gaussian theory of rubber in biaxial strain. I. Mechanical properties. Proc. R. Soc. Lond. A 369, 261–280 (1979)

    Article  ADS  MATH  Google Scholar 

  59. Wood, L.A., Bekkedahl, N.: Crystallization of unvulcanized rubber at different temperatures. J. Appl. Phys. 17, 362–375 (1946)

    Article  ADS  Google Scholar 

  60. Wu, P.D., van der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  ADS  MATH  Google Scholar 

  61. Yeh, G.S.Y.: Strain-induced crystallization II. Subsequent fibrillar-to-lamellar transformation. Polym. Eng. Sci. 16(3), 145–151 (1976)

    Article  Google Scholar 

  62. Ziegler, H., Wehrli, C.: The derivation of constitutive relations from the free energy and the dissipation function. Adv. Appl. Mech. 25, 183–238 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial support of the German Research Foundation (DFG) in the framework of project Mi 295/13-2 and the Cluster of Excellence EXC 310 Simulation Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Keip.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nateghi, A., Dal, H., Keip, MA. et al. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers. Continuum Mech. Thermodyn. 30, 485–507 (2018). https://doi.org/10.1007/s00161-017-0612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0612-8

Keywords

Navigation