Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 2, pp 347–363 | Cite as

Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

Original Article

Abstract

This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

Keywords

Pore pressure Adsorption Microporous Density functional theory Methane Carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

161_2017_602_MOESM1_ESM.gif (41.7 mb)
Supplementary material 1 (gif 42688 KB)
161_2017_602_MOESM2_ESM.gif (36.7 mb)
Supplementary material 2 (gif 37583 KB)
161_2017_602_MOESM3_ESM.gif (37 mb)
Supplementary material 3 (gif 37878 KB)

References

  1. 1.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985)CrossRefGoogle Scholar
  2. 2.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)Google Scholar
  3. 3.
    Larsen, J.W.: The effects of dissolved \(\text{ CO }_{2}\) on coal structure and properties. Int. J. Coal Geol. 57(1), 63–70 (2004)CrossRefGoogle Scholar
  4. 4.
    Pan, Z., Connell, L.: A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 69(4), 243–252 (2007)CrossRefGoogle Scholar
  5. 5.
    Levine, J.R.: Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs. Geol. Soc. Lond. Spec. Publ. 109(1), 197–212 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Thommes, M., Cychosz, K.: Physical adsorption characterization of nanoporous materials. Adsorption 20, 233–250 (2014)CrossRefGoogle Scholar
  7. 7.
    Gor, G.Y., Huber, P., Bernstein, N.: Adsorption-induced deformation of nanoporous materials. A review. Appl. Phys. Rev. 4(1), 11303 (2017)CrossRefGoogle Scholar
  8. 8.
    Meehan, F.T.: The expansion of charcoal on sorption of carbon dioxide. Proc. R. Soc. A Math. Phys. Eng. Sci. 115(770), 199–207 (1927)ADSCrossRefGoogle Scholar
  9. 9.
    Briggs, H., Sinha, R.P.: Expansion and contraction of coal caused respectively by the sorption and discharge of gas. Proc. R. Soc. Edinb. 53, 48–53 (1933)CrossRefGoogle Scholar
  10. 10.
    Day, S., Fry, R., Sakurovs, R.: Swelling of Australian coals in supercritical CO\(<\) sub \(>\) 2\(<\)/sub\(>\). Int. J. Coal Geol. 74(1), 41–52 (2008)CrossRefGoogle Scholar
  11. 11.
    Ottiger, S., Pini, R., Storti, G., Mazzotti, M.: Competitive adsorption equilibria of \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) on a dry coal. Adsorption 14(4–5), 539–556 (2008)CrossRefGoogle Scholar
  12. 12.
    Pini, R., Ottiger, S., Burlini, L., Storti, G., Mazzotti, M.: Role of adsorption and swelling on the dynamics of gas injection in coal. J. Geophys. Res. 114, B04203 (2009).  https://doi.org/10.1029/2008JB005961
  13. 13.
    Hol, S., Spiers, C.J.: Competition between adsorption-induced swelling and elastic compression of coal at \(\text{ CO }_{2}\) pressures up to 100 MPa. J. Mech. Phys. Solids 60(11), 1862–1882 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Espinoza, D.N., Vandamme, M., Pereira, J.M., Dangla, P., Vidal-Gilbert, S.: Measurement and modeling of adsorptive-poromechanical properties of bituminous coal cores exposed to \(\text{ CO }_{2}\): adsorption, swelling strains, swelling stresses and impact on fracture permeability. Int. J. Coal Geol. 134, 80–95 (2014)CrossRefGoogle Scholar
  15. 15.
    Perrier, L., Plantier, F., Grégoire, D.: A novel experimental setup for simultaneous adsorption and induced deformation measurements in microporous materials. Rev. Sci. Instrum. 88, 035104 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Perrier, L.: Coupling between adsorption and deformation in microporous media. Ph.D. thesis, Université Pau & Pays Adour (2015)Google Scholar
  17. 17.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Coussy, O.: Poromechanics. John Wiley & Sons, Ltd., Hoboken (2004)MATHGoogle Scholar
  19. 19.
    Perrier, L., Pijaudier-Cabot, G., Grégoire, D.: Poromechanics of adsorption-induced swelling in microporous materials: a new poromechanical model taking into account strain effects on adsorption. Contin. Mech. Thermodyn. 27(1–2), 195–209 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic press, Cambridge (2015)Google Scholar
  21. 21.
    Do, D.D., Nicholson, D., Do, H.D.: Effects of adsorbent deformation on the adsorption of gases in slitlike graphitic pores: a computer simulation study. J. Phys. Chem. C 112(36), 14075–14089 (2008)CrossRefGoogle Scholar
  22. 22.
    Diao, R., Fan, C., Do, D.D., Nicholson, D.: Monte Carlo simulation of adsorption-induced deformation in finite graphitic slit pores. J. Phys. Chem. C 120(51), 29272–29282 (2016)CrossRefGoogle Scholar
  23. 23.
    Nguyen, V.T., Do, D.D., Nicholson, D.: Solid deformation induced by the adsorption of methane and methanol under sub- and supercritical conditions. J. Colloid Interf. Sci. 388(1), 209–218 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Kowalczyk, P., Furmaniak, S., Gauden, P.A., Terzyk, A.P.: Carbon dioxide adsorption-induced deformation of microporous carbons. J. Phys. Chem. C 114(11), 5126–5133 (2010)CrossRefGoogle Scholar
  25. 25.
    Kowalczyk, P., Balzer, C., Reichenauer, G., Terzyk, A.P., Gauden, P.A., Neimark, A.V.: Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon 103, 263–272 (2016)CrossRefGoogle Scholar
  26. 26.
    Kowalczyk, P., Ciach, A., Terzyk, A.P., Gauden, P.A., Furmaniak, S.: Effects of critical fluctuations on adsorption-induced deformation of microporous carbons. J. Phys. Chem. C 119(11), 6111–6120 (2015)CrossRefGoogle Scholar
  27. 27.
    Khaddour, F., Knorst-Fouran, A., Plantier, F., Piñeiro, M.M., Mendiboure, B., Miqueu, C.: A fully consistent experimental and molecular simulation study of methane adsorption on activated carbon. Adsorption 20(4), 649–656 (2014)CrossRefGoogle Scholar
  28. 28.
    Vermorel, R., Pijaudier-Cabot, G.: Enhanced continuum poromechanics to account for adsorption induced swelling of saturated isotropic microporous materials. Eur. J. Mech. A Solids 44, 148–156 (2014)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Perrier, L., Pijaudier-Cabot, G., Grégoire, D.: Extended poromechanics for adsorption-induced swelling prediction in double porosity media: modeling and experimental validation on an activated carbon. J. Mech. Phys. Solids (submitted, 2017)Google Scholar
  30. 30.
    Evans, R.: Density Functionals in the Theory of Nonuniform Fluids. In: Henderson, D. (ed.) Fundamentals of Inhomogeneous Fluids, pp. 85–176. Marcel Dekker Inc., New York, NY (1992)Google Scholar
  31. 31.
    Davis, H.T.: Statistical Mechanics of Phases, Interfaces and Thin Films. Wiley-VCH, New York (1998)MATHGoogle Scholar
  32. 32.
    Malheiro, C., Mendiboure, B., Plantier, F., Blas, F.J., Miqueu, C.: Density functional theory for the description of spherical non-associating monomers in confined media using the SAFT-VR equation of state and weighted density approximations. J. Chem. Phys. 140, 134707 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Malheiro, C., Mendiboure, B., Miguez, J.M., Piñeiro, M.M., Miqueu, C.: Non-local density functional theory and grand canonical Monte Carlo molecular simulations applied to confined water. j. Phys. Chem. C 118(43), 24905–24914 (2014)CrossRefGoogle Scholar
  34. 34.
    Balbuena, P.B., Berry, D., Gubbins, K.E.: Solvation pressures for simple fluids in micropores. J. Phys. Chem. 97(4), 937–943 (1993)CrossRefGoogle Scholar
  35. 35.
    Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption deformation. Langmuir 22(26), 10864–10868 (2006)CrossRefGoogle Scholar
  36. 36.
    Balzer, C., Cimino, R.T., Gor, G.Y., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbons during \(\text{ N }_2\), Ar, and \(\text{ CO }_2\) adsorption: insight from the density functional theory. Langmuir 32(32), 8265–8274 (2016)CrossRefGoogle Scholar
  37. 37.
    Yang, K., Lin, Y., Lu, X., Neimark, A.V.: Solvation forces between molecularly rough surfaces. J. Colloid Interf. Sci. 362(2), 382–388 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Ustinov, E., Do, D.: Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions. Carbon 44(13), 2652–2663 (2006)CrossRefGoogle Scholar
  39. 39.
    Yang, K., Lu, X., Lin, Y., Neimark, A.V.: Deformation of coal induced by methane adsorption at geological conditions. Energy Fuels 24(11), 5955–5964 (2010)CrossRefGoogle Scholar
  40. 40.
    Gil-Villegas, A., Galindo, A., Whitehead, P.J., Mills, S.J., Jackson, G., Burgess, A.N.: Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J. Chem. Phys. 106(10), 4168–4186 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    Hansen-Goos, H., Roth, R.: Density functional theory for hard-sphere mixtures: the White Bear version mark II. J. Phys. Condens. Matter Inst. Phys. J. 18(37), 8413–25 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Yu, Y.X., Wu, J.: A fundamental-measure theory for inhomogeneous associating fluids. J. Chem. Phys. 116(16), 7094 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Llovell, F., Galindo, A., Blas, F.J., Jackson, G.: Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range. J. Chem. Phys. 133(2), 024704 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Steele, W.A.: The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973)ADSCrossRefGoogle Scholar
  45. 45.
    Tan, Z., Gubbins, K.E.: Adsorption in carbon micropores at supercritical temperatures. J. Phys. Chem. 94(15), 6061–6069 (1990)CrossRefGoogle Scholar
  46. 46.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  47. 47.
    Kopanichuk, I.V., Vanin, A.A., Brodskaya, E.N.: Disjoining pressure and structure of a fluid confined between nanoscale surfaces. Colloids Surf. A 527(May), 42–48 (2017)CrossRefGoogle Scholar
  48. 48.
    Henderson, J.R.: Compressibility route to solvation structure. Mol. Phys. 59(1), 89–96 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    Tarazona, P., Vicente, L.: A model for density oscillations in liquids between solid walls. Mol. Phys. 56(3), 557–572 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    Christenson, H.K.: Experimental measurements of solvation forces in nonpolar liquids. J. Chem. Phys. 78(11), 6906–6913 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    Nguyen, T.X., Bhatia, S.K., Nicholson, D.: Close packed transitions in slit-shaped pores: density functional theory study of methane adsorption capacity in carbon. J. Chem. Phys. 117(23), 10827–10836 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratoire des Fluides Complexes et leurs Réservoirs, LFCR-IPRA, UMR5150University Pau and Pays AdourAngletFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations