Continuum Mechanics and Thermodynamics

, Volume 30, Issue 2, pp 291–300 | Cite as

General stability of memory-type thermoelastic Timoshenko beam acting on shear force

Original Article


In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann–Dirichlet–Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895–6906, 2011, Acta Math Sci 33(1):23–40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.


Timoshenko Linear thermoelasticity General decay Relaxation function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks UoHB for its continuous support and the referees for their valuable suggestions and remarks.


  1. 1.
    Almeida Júnior, D.S., Santos, M.L., Múnoz Rivera, J.E.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys. 65(6), 1233–1249 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Almeida Júnior, D.S., Santos, M.L., Múnoz Rivera, J.E.: Stability to weakly dissipative Timoshenko systems. Math. Meth. Appl. Sci. 36(14), 1965–1976 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ammar-Khodja, F., Muñoz, Benabdallah A., Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Apalara, T.A.: Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks. Appl. Anal. 95(1), 187–202 (2016)Google Scholar
  5. 5.
    Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1975)MATHGoogle Scholar
  6. 6.
    Guesmia, A., Messaoudi, S.A.: On the control of a viscoelastic damped Timoshenko-type system. Appl. Math. Comput. 2062, 589–597 (2008)MathSciNetMATHGoogle Scholar
  7. 7.
    Guesmia, A., Messaoudi, S.A.: General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Meth. Appl. Sci. 32(16), 2102–2122 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guesmia, A., Messaoudi, S.A., Soufyane, A.: Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems. Electron. J. Differ. Equ. 2012(193), 1–45 (2012)MathSciNetMATHGoogle Scholar
  9. 9.
    Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417–1429 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Messaoudi, S.A., Mustafa, M.I.: A stability result in a memory-type Timoshenko system. Dyn. Syst. Appl. 183–4, 457–468 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Messaoudi, S.A., Said-Houari, B.: Uniform decay in a Timoshenko-type system with past history. J. Math. Anal. Appl. 360(2), 459–475 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal. TMA 74(18), 6895–6906 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of nonequal speeds. Acta Math. Sci. 33(1), 23–40 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Messaoudi, S.A., Pokojovy, M., SaidHouari, B.: Nonlinear damped Timoshenko systems with second soundglobal existence and exponential stability. Math. Meth. Appl. Sci. 32(5), 505–534 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Muñoz Rivera, J.E., Racke, R.: Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability. J. Math. Anal. Appl. 276(1), 248–278 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Muñoz Rivera, J.E., Racke, R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341(2), 1068–1083 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Raposo, C.A., Ferreira, J., Santos, M.L., Castro, N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18(5), 535–541 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Soufyane, A., Whebe, A.: Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron. J. Differ. Equ. 2003(29), 1–14 (2003)MathSciNetMATHGoogle Scholar
  20. 20.
    Tatar, N.: Exponential decay for a viscoelastically damped Timoshenko beam. Acta Math. Sci. 33B(2), 505–524 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tatar, N.: Stabilization of a viscoelastic Timoshenko beam. Appl. Anal. 92(1), 27–43 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of Hafr Al-Batin (UoHB)Hafr Al-BatinSaudi Arabia

Personalised recommendations