Skip to main content
Log in

An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is “correct,” i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\varvec{x}}\) :

Position vector in current placement (m)

\({\varvec{X}}\) :

Position vector in reference placement (m)

\({\varvec{v}}\) :

Barycentric velocity (m / s)

\({\varvec{v}}_{\text {I}}\) :

Barycentric surface velocity (m / s)

\({\varvec{w}}\) :

Velocity of a singular surface (m / s)

\( w_\bot \) :

Normal velocity of a singular surface (m / s)

\({\varvec{n}}\) :

Normal vector (1)

\(P_n\) :

\(n{\text {th}}\) Legendre polynomial (1)

\(\mathrm {K}\) :

Complete elliptic integral of the first kind (1)

\(\mathrm {E}\) :

Complete elliptic integral of the second kind (1)

\(\Pi \) :

Complete elliptic integral of the third kind (1)

\(\mathrm {B}\) :

Incomplete beta function (1)

\(\,{}_2\mathrm {F}_1\) :

A hypergeometric function (1)

R :

Characteristic radius of a problem (m)

H :

Characteristic length of a problem (m)

d :

End-to-end distance between magnets (m)

\(\kappa \) :

Normed end-to-end distance between magnets, \(\kappa = {d}/{R}\) (1)

r :

Radial spherical coordinate (m)

\(\tilde{r}\) :

Dimensionless radial spherical coordinate, \(\tilde{r}= {r}/{R}\) (1)

\(\vartheta \) :

Polar spherical angle, \(\vartheta \in [0, {\uppi }]\) (1)

x :

Cosine of polar spherical angle (1)

\(\xi \) :

Radial cylindrical coordinate (m)

\(\tilde{\xi }\) :

Dimensionless radial cylindrical coordinate, \(\tilde{\xi } = {\xi }/{R}\) (1)

z :

Axial cylindrical coordinate [m]

\(\tilde{z}\) :

Dimensionless axial cylindrical coordinate, \(\tilde{z} = {z}/{R}\) (1)

\(\varphi \) :

Azimuthal angle, \(\varphi \in [0, 2{\uppi })\) (1)

V :

Volume in current placement (\(\hbox {m}^3\))

\(V_0\) :

Volume in reference placement (\(\hbox {m}^3\))

\({\varvec{u}}\) :

Displacement field (m)

\({\varvec{u}}_{\text {I}}\) :

Surface displacement field (m)

\(\hat{u}\) :

Scale of surface displacement (m)

\(\tilde{u}_\mathrm {P}\) :

Dimensionless pole displacement (1)

\(u_r\) :

Radial displacement component w.r.t. \({\varvec{e}}_r\) (m)

\(u_\vartheta \) :

Polar displacement component w.r.t. \({\varvec{e}}_\vartheta \) (m)

\({\varvec{F}}\) :

Deformation gradient \({\varvec{F}} = {\varvec{1}} + {\varvec{u}} \otimes \nabla _X\) (1)

J :

Determinant of deformation gradient (1)

\((\cdot )^\mathrm {I}\) :

Indicates interior domain of a problem

\((\cdot )^\mathrm {O}\) :

Indicates exterior domain of a problem

\(\tilde{(\cdot )}\) :

A normalized dimensionless function (1)

\((\cdot )_{\text {I}}\) :

Interface quantity

\((\cdot )^\mathrm {S}\) :

Refers to silicone oil

\((\cdot )^\mathrm {C}\) :

Refers to castor oil

\({\varvec{e}}_z\) :

Cylindrical axial unit vector (1)

\({\varvec{e}}_\xi \) :

Cylindrical radial unit vector (1)

\({\varvec{1}}\) :

Unit tensor of rank two (1)

\({\varvec{1}}_{\text {I}}\) :

Interface projector, \({\varvec{1}}_{\text {I}}= {\varvec{1}} - {\varvec{n}} \otimes {\varvec{n}}\) (1)

\(\nabla \) :

Nabla operator, (1/m)

\(\nabla _{\text {I}}\) :

surface nabla, \(\nabla _{\text {I}}= {\varvec{1}}_{\text {I}}\cdot \nabla \) (1/m)

\({\varvec{\sigma }}\) :

Cauchy stress tensor (N / \(\hbox {m}^2\))

p :

Pressure (N / \(\hbox {m}^2\))

\(\varvec{\sigma }_{\text {I}}\) :

Cauchy surface stress tensor (N / m)

\(\sigma _{\text {I}}\) :

Surface tension (N / m)

\({\varvec{\varepsilon }}\) :

Linear strain tensor (1)

\({\varvec{\varepsilon }}_{\text {I}}\) :

Linear surface strain tensor (1)

m :

Mass of a body (kg)

\(\rho \) :

Mass density (kg / \(\hbox {m}^3\))

\(\rho _{\text {I}}\) :

Surface mass density (kg / \(\hbox {m}^2\))

\(\lambda \) :

LamÉ’s first parameter (N / \(\hbox {m}^2\))

\(\mu \) :

LamÉ’s second parameter (N / \(\hbox {m}^2\))

\(\lambda _{\text {I}}\) :

First elastic surface parameter (N / m)

\(\mu _{\text {I}}\) :

Second elastic surface parameter (N / m)

\(\nu \) :

Poisson’s ratio (1)

\(\psi \) :

Gravitational potential (\(\hbox {m}^2\)/\(\hbox {s}^2\))

G :

Gravitational constant \(G = 6.67408 \star 10^{-11}\) \(\hbox {m}^3\)/(kg \(\hbox {s}^2\))

\({\varvec{g}}\) :

Gravitational specific force density (m/\(\hbox {s}^2\))

\({\varvec{F}}^\mathrm {tot.}\) :

Total force acting on a body (N)

\({\varvec{f}}\) :

Volumetric force density (N / \(\hbox {m}^3\))

\({\varvec{f}}_{\text {I}}\) :

Surface force density (N / \(\hbox {m}^2\))

\(\hat{f}\) :

Scale of surface force density (N / \(\hbox {m}^2\))

\({\varvec{q}}\) :

Heat flux (N / (m s))

\(\hat{r}\) :

Specific heating (\(\hbox {m}^2\)/\(\hbox {s}^3\))

u :

Specific internal energy (\(\hbox {m}^2\)/\(\hbox {s}^2\))

\(\chi _{\mathrm {v}}\) :

Compressibility factor (1)

\(e_{\mathrm {v}}\) :

Relative volume change (1)

\(\gamma \) :

Pressure-related factor (1)

\({\varvec{B}}\) :

Magnetic flux density (T)

\({\varvec{H}}\) :

Potential of total electric current (A / m)

\(\varvec{\mathfrak {H}}\) :

Potential of free electric current (A / m)

\({\varvec{M}}\) :

Minkowski magnetization (A / m)

\({\varvec{E}}\) :

Electric field (V/m)

\({\varvec{D}}\) :

Potential of total electric charge (C / \(\hbox {m}^2\))

\(\varvec{\mathfrak {D}}\) :

Potential of free electric charge (C / \(\hbox {m}^2\))

\({\varvec{P}}\) :

Polarization (C / \(\hbox {m}^2\))

V :

Electric disturbance potential (V)

\(\mathcal {V}\) :

Scaled electric disturbance potential (1)

\({\varvec{E}}_0\) :

External electric field (V/m)

\({\varvec{E}}^\mathrm {dist.}\) :

Electric disturbance field (V/m)

\(E_0\) :

External electric field strength (V/m)

\(M_0\) :

Magnetization strength of a magnet (A / m)

\(\beta \) :

Direction factor of magnetization (1)

\(\mu _0\) :

Vacuum permeability (N / A\(^2\))

\(\mu _\mathrm {r}\) :

Relative permeability (1)

\(\epsilon _0\) :

Vacuum permittivity \({\mathrm {A}^2 \mathrm {s}^2}/({\mathrm {N} \mathrm {m}^2}\))

\(\epsilon _\mathrm {r}\) :

Relative permittivity (1)

q :

Total electric charge density (C / \(\hbox {m}^3\))

\(q^{\text {f}}\) :

Free electric charge density (C / \(\hbox {m}^3\))

\(q^{\text {r}}\) :

Bound electric charge density (C / \(\hbox {m}^3\))

\(q^{\text {f}}_{\text {I}}\) :

Singular free electric charge density (C / \(\hbox {m}^2\))

\(q^{\text {r}}_{\text {I}}\) :

Singular bound electric charge density (C / \(\hbox {m}^2\))

\({\varvec{J}}\) :

Total electric current density (A / \(\hbox {m}^2\))

\({\varvec{J}}^{\text {f}}\) :

Free electric current density (A / \(\hbox {m}^2\))

\({\varvec{J}}^{\text {r}}\) :

Bound electric current density (A / \(\hbox {m}^2\))

\({\varvec{J}}_{\text {I}}\) :

Singular total electric current density (A / m)

\({\varvec{J}}^{\text {f}}_{\text {I}}\) :

Singular free electric current density (A / m)

\({\varvec{J}}^{\text {r}}_{\text {I}}\) :

Singular bound electric current density (A / m)

\({\varvec{j}}^{\text {f}}\) :

Free diffusive electric current density (A / \(\hbox {m}^2\))

\({\varvec{j}}^{\text {f}}_{\text {I}}\) :

Singular free diffusive electric current density (A / m)

\({\varvec{\sigma }}^\text {(EM)}\) :

Electromagnetic stress tensor (N / \(\hbox {m}^2\))

\({\varvec{g}}^\text {(EM)}\) :

Electromagnetic momentum density (N / \(\hbox {m}^2\))

\({\varvec{f}}^\text {(EM)}\) :

Electromagnetic volumetric force density (N / \(\hbox {m}^3\))

\({\varvec{f}}_{\text {I}}^\text {(EM)}\) :

Electromagnetic surface force density (N / \(\hbox {m}^2\))

\((\cdot )^\mathrm {L}\) :

Quantity of generalized Lorentz force model

\((\cdot )^{\mathrm {A}_i}\) :

Quantity of an Abraham force model

\((\cdot )^{\mathrm {M}_i}\) :

Quantity of a Minkowski force model

\((\cdot )^{\mathrm {EL}}\) :

Quantity of EinsteinLaub force model

References

  1. Abraham, M.: Zur Elektrodynamik bewegter Körper. Rendiconti del Circolo Matematico di Palermo (1884–1940) 28(1), 1–28 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 9. Dover (1972)

  3. Barnett, S.M.: Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104(7), 070401 (2010)

    Article  ADS  Google Scholar 

  4. Barnett, S.M., Loudon, R.: On the electromagnetic force on a dielectric medium. J. Phys. B At. Mol. Opt. Phys. 39(15), 671–684 (2006)

    Article  ADS  Google Scholar 

  5. Bethune-Waddell, M., Chau, K.J.: Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter. Rep. Prog. Phys. 78(12), 122401 (2015)

    Article  ADS  Google Scholar 

  6. Chu, L.J., Haus, H.A., Penfield, P.: The force density in polarizable and magnetizable fluids. Proc. IEEE 54(7), 920–935 (1966)

    Article  Google Scholar 

  7. Datsyuk, V.V., Pavlyniuk, O.R.: Maxwell stress on a small dielectric sphere in a dielectric. Phys. Rev. A 91(2), 023826 (2015)

    Article  ADS  Google Scholar 

  8. Dziubek, A.: Equations for two-phase flows: a primer. ArXiv e-prints (2011)

  9. Einstein, A., Laub, J.: Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte. Ann. Phys. 331(8), 541–550 (1908)

    Article  MATH  Google Scholar 

  10. Fitzpatrick, R.: Classical Electromagnetism. The University of Texas at Austin, Austin (2006)

    Google Scholar 

  11. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Griffiths, D.J.: Resource letter em-1: electromagnetic momentum. Am. J. Phys. 80(1), 7–18 (2012)

    Article  ADS  Google Scholar 

  13. Guhlke, C.: Theorie der elektrochemischen Grenzfläche. Ph.D. thesis, Technische Universität Berlin (2015)

  14. Hiramatsu, Y., Oka, Y.: Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3(2), 89–90 (1966)

    Article  Google Scholar 

  15. Hutter, K.: On thermodynamics and thermostatics of viscous thermoelastic solids in the electromagnetic fields. A Lagrangian formulation. Arch. Ration. Mech. Anal. 58, 339–368 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hutter, K., Ven, A.A.F., Ursescu, A.: Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids. Springer, Berlin (2006)

    Google Scholar 

  17. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  18. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  19. Liebold, C., Müller, W.H.: Are microcontinuum field theories of elasticity amenable to experiments? A review of some recent results. In: Differential Geometry and Continuum Mechanics, pp. 255–278. Springer Nature (2015)

  20. magnets4you GmbH: Bar magnet STM-20x34-N (2016). https://www.magnet-shop.net/media/pdf/de/1c/a4/Datenblatt_STM-20x34-N.pdf

  21. Mahdy, M.C.M.: It should be Einstein-Laub equations inside matter. arXiv preprint arXiv:1211.0155 (2012)

  22. Mansuripur, M.: Resolution of the Abraham–Minkowski controversy. Opt. Commun. 283(10), 1997–2005 (2010)

    Article  ADS  Google Scholar 

  23. Mansuripur, M.: Electromagnetic force and torque in Lorentz and Einstein-Laub formulations. In: SPIE NanoScience + Engineering. International Society for Optics and Photonics (2014)

  24. Minkowski, H.: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Math. Ann. 68(4), 472–525 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  25. MTS Systems Corporation, Eden Prairie, Minnesota 55344-2290 USA: Tytron\(^{{\rm TM}}\) 250 Microforce Load Unit (2002). http://www.mts.com/cs/groups/public/documents/library/mts_004918.pdf

  26. Müller, I.: Thermodynamics, Interaction of Mechanics and Mathematics Series. Pitman, Trowbridge (1985)

    Google Scholar 

  27. Müller, W.H.: An Expedition to Continuum Theory. Solid mechanics and its applications series. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  28. Obukhov, Y.N.: Electromagnetic energy and momentum in moving media. Ann. Phys. 17(9–10), 830–851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raikher, Y.L., Stolbov, O.V.: Deformation of an ellipsoidal ferrogel sample in a uniform magnetic field. J. Appl. Mech. Tech. Phys. 46(3), 434–443 (2005)

    Article  ADS  Google Scholar 

  30. Reich, F.A., Rickert, W., Stahn, O., Müller, W.H.: Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field. Contin. Mech. Thermodyn. 29(2), 535–557 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Reich, F.A., Stahn, O., Müller, W.H.: The magnetic field of a permanent hollow cylindrical magnet. Contin. Mech. Thermodyn. 28(5), 1435–1444 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shah, D.O.: Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, Cambridge (1977)

    Google Scholar 

  33. Shevchenko, A., Kaivola, M.: Electromagnetic force density and energy-momentum tensor in an arbitrary continuous medium. J. Phys. B At. Mol. Opt. Phys. 44(17), 175401 (2011)

    Article  ADS  Google Scholar 

  34. Slattery, J.C., Sagis, L., Oh, E.S.: Interfacial Transport Phenomena. Springer, Berlin (2007)

    MATH  Google Scholar 

  35. Steigmann, D.J.: On the formulation of balance laws for electromagnetic continua. Math. Mech. Solids 14(4), 390–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Steinmann, P.: On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 56(3), 772–800 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  38. Torza, S., Cox, R.G., Mason, S.G.: Electrohydrodynamic deformation and burst of liquid drops. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 269(1198), 295–319 (1971)

    Article  ADS  Google Scholar 

  39. Truesdell, C.A., Toupin, R.: The classical field theories. In: Handbuch der Physik, Bd. III/1, pp. 226–793; appendix, pp. 794–858. Springer, Berlin (1960). With an appendix on tensor fields by J.L. Ericksen

  40. Wang, C.: Comment on “resolution of the Abraham–Minkowski dilemma”. arXiv preprint arXiv:1202.2575 (2012)

  41. Wolfram Research, Inc.: Mathematica, 11 edn. (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix A. Reich.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, F.A., Rickert, W. & Müller, W.H. An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems. Continuum Mech. Thermodyn. 30, 233–266 (2018). https://doi.org/10.1007/s00161-017-0596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0596-4

Keywords

Navigation