Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1375–1387 | Cite as

How to define the storage and loss moduli for a rheologically nonlinear material?

A constructive review of nonlinear rheological measures
  • Ivan Argatov
  • Alexei Iantchenko
  • Vitaly Kocherbitov
Original Article
  • 54 Downloads

Abstract

A large amplitude oscillatory shear (LAOS) is considered in the strain-controlled regime, and the interrelation between the Fourier transform and the stress decomposition approaches is established. Several definitions of the generalized storage and loss moduli are examined in a unified conceptual scheme based on the Lissajous–Bowditch plots. An illustrative example of evaluating the generalized moduli from a LAOS flow is given.

Keywords

Large amplitude oscillatory shear Storage and loss moduli Fourier transform rheology Stress decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1998)Google Scholar
  2. 2.
    Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28, 1221–1246 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Graf, G., Kocherbitov, V.: Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique. J. Phys. Chem. B 117, 10017–10026 (2013)CrossRefGoogle Scholar
  4. 4.
    Znamenskaya, Y., Sotres, J., Gavryushov, S., Engblom, J., Arnebrant, T., Kocherbitov, V.: Water sorption and glass transition of pig gastric mucin studied by QCM-D. J. Phys. Chem. B 117, 2554–2563 (2013)CrossRefGoogle Scholar
  5. 5.
    Björklund, S., Kocherbitov, V.: Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes. Rev. Sci. Instrum. 86, 055105 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1971)Google Scholar
  7. 7.
    Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)CrossRefMATHGoogle Scholar
  8. 8.
    Brader, J.M., Siebenbürger, M., Ballauff, M., Reinheimer, K., Wilhelm, M., Frey, S.J., Weysser, F., Fuchs, M.: Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. Phys. Rev. E 82, 061401 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Argatov, I.: Sinusoidally-driven flat-ended indentation of time-dependent materials: asymptotic models for low and high rate loading. Mech. Mater. 48, 56–70 (2012)CrossRefGoogle Scholar
  10. 10.
    Cho, K.S., Hyun, K., Ahn, K.H., Lee, S.J.: A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Thompson, R.L., Alicke, A.A., de Souza Mendes, P.R.: Model-based material functions for SAOS and LAOS analyses. J. Non Newton. Fluid Mech. 215, 19–30 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kim, H., Hyun, K., Kim, D.-J., Cho, K.S.: Comparison of interpretation methods for large amplitude oscillatory shear response. Korea Aust. Rheol. J. 18(2), 91–98 (2006)Google Scholar
  13. 13.
    Ewoldt, R.H., Hosoi, A.E., McKinley, G.H.: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Yu, W., Wang, P., Zhou, C.: General stress decomposition in nonlinear oscillatory shear flow. J. Rheol. 53, 215–238 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Ewoldt, R.H.: Defining nonlinear rheological material functions for oscillatory shear. J. Rheol. 57, 177–195 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 6th edn. Academic Press, San Diego (2000)MATHGoogle Scholar
  17. 17.
    Krylov, N., Bogoliubov, N.: Introduction to Non-linear Mechanics. Princeton University Press, Princeton (1947)MATHGoogle Scholar
  18. 18.
    Ilyin, S., Kulichikhin, V., Malkin, A.: Characterization of material viscoelasticity at large deformations. Appl. Rheol. 24, 13653 (2014)Google Scholar
  19. 19.
    Läuger, J., Stettin, H.: Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol. Acta 49, 909–930 (2010)CrossRefGoogle Scholar
  20. 20.
    Hess, A., Aksel, N.: Yielding and structural relaxation in soft materials: evaluation of strain-rate frequency superposition data by the stress decomposition method. Phys. Rev. E 84, 051502 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Cho, K.S., Song, K.-W., Chang, G.-S.: Scaling relations in nonlinear viscoelastic behavior of aqueous PEO solutions under large amplitude oscillatory shear flow. J. Rheol. 54, 27–63 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Rogers, S.A., Erwin, B.M., Vlassopoulos, D., Cloitre, M.: A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J. Rheol. 55, 435–458 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Rogers, S.A.: A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J. Rheol. 56, 1129–1151 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Giacomin, A.J., Oakley, J.G.: Obtaining Fourier series graphically from large amplitude oscillatory shear loops. Rheol. Acta 32, 328–332 (1993)CrossRefGoogle Scholar
  25. 25.
    Bae, J.E., Lee, M., Cho, K.S., Seo, K.H., Kang, D.G.: Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear. Rheol. Acta 52, 841–857 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für MechanikTechnische Universität BerlinBerlinGermany
  2. 2.Faculty of Technology and SocietyMalmö UniversityMalmöSweden

Personalised recommendations