Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1335–1345 | Cite as

On the thermodynamics of the Swift–Hohenberg theory

  • L. F. R. Espath
  • A. F. Sarmiento
  • L. Dalcin
  • V. M. Calo
Original Article

Abstract

We present the microbalance including the microforces, the first- and second-order microstresses for the Swift–Hohenberg equation concomitantly with their constitutive equations, which are consistent with the free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional endowed with second-order spatial derivatives. Additionally, we generalize the Swift–Hohenberg theory via a proper constitutive process. Finally, we present one highly resolved three-dimensional numerical simulation to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of the Swift–Hohenberg equation.

Keywords

Phase-field Gradient theory Thermodynamics of continua Swift–Hohenberg theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dalcin, L., Collier, N., Vignal, P., Côrtes, A.M.A., Calo, V.M.: PetIGA: a framework for high-performance isogeometric analysis. Comput. Methods Appl. Mech. Eng. 308, 151–181 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dell’Isola, F., Seppecher, P., Madeo, A.: Beyond Euler–Cauchy continua: the structure of contact actions in n-th gradient generalized continua: a generalization of the cauchy tetrahedron argument. In: dell’Isola, F., Gavrilyuk, S.L. (eds.) Variational Models and Methods in Solid and Fluid Mechanics, pp. 17–106. Springer, Wien (2011)Google Scholar
  4. 4.
    Espath, L.F.R., Sarmiento, A.F., Vignal, P., Varga, B.O.N., Cortes, A.M.A., Dalcin, L., Calo, V.M.: Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model. J. Fluid Mech. 797, 389–430 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fried, E.: Continua described by a microstructural field. Zeitschrift für angewandte Mathematik und Physik ZAMP 47(1), 168–175 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fried, E.: On the relationship between supplemental balances in two theories for pure interface motion. SIAM J. Appl. Math. 66(4), 1130–1149 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Phys. D Nonlinear Phenom. 68(3), 326–343 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fried, E., Gurtin, M.E.: Dynamic solid–solid transitions with phase characterized by an order parameter. Phys. D Nonlinear Phenom. 72(4), 287–308 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D Nonlinear Phenom. 92(3), 178–192 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  12. 12.
    Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRefGoogle Scholar
  13. 13.
    Praetorius, S., Voigt, A.: A Navier–Stokes phase-field crystal model for colloidal suspensions. J. Chem. Phys. 142(15), 154904 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Sagiyama, K., Rudraraju, S., Garikipati, K.: Unconditionally stable, second-order accurate schemes for solid state phase transformations driven by mechano-chemical spinodal decomposition. ArXiv preprint arXiv:1508.00277 (2015)
  15. 15.
    Sarmiento, A., Cortes, A.M.A., Garcia, D., Dalcin, L., Collier, N., Calo, V.M.: PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces. J. Comput. Sci. 18, 117–131 (2016)CrossRefGoogle Scholar
  16. 16.
    Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15(1), 319 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    Thiele, U., Archer, A.J., Robbins, M.J., Gomez, H., Knobloch, E.: Localized states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Phys. Rev. E 87(4), 042915 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vignal, P.: Thermodynamically consistent algorithms for the solution of phase-field models. Ph.D. thesis, King Abdullah University of Science and Technology (2016)Google Scholar
  21. 21.
    Vignal, P., Dalcin, L., Brown, D.L., Collier, N., Calo, V.M.: An energy-stable convex splitting for the phase-field crystal equation. Comput. Struct. 158, 355–368 (2015)CrossRefGoogle Scholar
  22. 22.
    Vignal, P., Sarmiento, A., Côrtes, A.M.A., Dalcin, L., Calo, V.M.: Coupling Navier–Stokes and Cahn–Hilliard equations in a two-dimensional annular flow configuration. Proc. Comput. Sci. 51, 934–943 (2015)CrossRefGoogle Scholar
  23. 23.
    Vignal, P., Collier, N., Dalcin, L., Brown, D.L., Calo, V.M.: An energy-stable time-integrator for phase-field models. Comput. Methods Appl. Mech. Eng. 158, 355–368 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • L. F. R. Espath
    • 1
  • A. F. Sarmiento
    • 1
  • L. Dalcin
    • 2
  • V. M. Calo
    • 3
    • 4
  1. 1.Computer, Electrical and Mathematical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Extreme Computing Research Center, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Applied Geology, Western Australian School of Mines, Faculty of Science and EngineeringCurtin UniversityPerthAustralia
  4. 4.Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO)KensingtonAustralia

Personalised recommendations