Advertisement

Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1347–1363 | Cite as

The flow of magnetohydrodynamic Maxwell nanofluid over a cylinder with Cattaneo–Christov heat flux model

  • C. S. K. Raju
  • P. Sanjeevi
  • M. C. Raju
  • S. M. Ibrahim
  • G. Lorenzini
  • E. Lorenzini
Original Article

Abstract

A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo–Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge–Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.

Keywords

Cattaneo–Christov heat flux model MHD Brownian motion Cylinder Thermophoresis Non-uniform heat source/sink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhahir, S.A.: On non-Newtonian flow past a cylinder in a confined flow. J. Rheol. 33, 781 (1999). doi: 10.1122/1.550074 ADSCrossRefGoogle Scholar
  2. 2.
    Martin, M.J., Boyd, I.D.: Momentum and heat transfer in a laminar boundary layer with slip flow. J. Thermophys. Heat Transf. 20, 710–719 (2006). doi: 10.2514/1.22968 CrossRefGoogle Scholar
  3. 3.
    Hayat, T., Abbas, Z., Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. 358, 396–403 (2006). doi: 10.1016/j.physleta.2006.04.117 MATHGoogle Scholar
  4. 4.
    Rashidi, M.M., Beg, O.A., Mehr, N.F., Hosseini, A., Gorla, R.S.R.: Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow. Theor. Appl. Mech. 39, 365–390 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Noor, N.F.M.: Analysis for MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. World Acad. Sci. Eng. Technol. 64, 1019–1023 (2012)Google Scholar
  6. 6.
    Hayat, T., Abbas, Z., Sajid, M.: MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos Solitons Fractals 39, 840–848 (2009). doi: 10.1016/j.chaos.2007.01.067 ADSCrossRefMATHGoogle Scholar
  7. 7.
    Shateyi, S.: A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. Bound. Value Probl. 196, 1–14 (2013). doi: 10.1186/1687-2770-2013-196 MathSciNetMATHGoogle Scholar
  8. 8.
    Anika, N.N., Hoque, M.M., Islam, N.: Hall current effects on magnetohydrodynamic fluid over an infinite rotating vertical porous plate embedded in unsteady laminar flow. Ann. Pure Appl. Math. 3, 189–200 (2013)Google Scholar
  9. 9.
    Sajid, M., Abbas, Z., Ali, N., Javed, T., Ahmad, I.: Slip flow of a Maxwell fluid past a stretching sheet. Walailak J. Sci. Technol. 11, 1093–1103 (2014)Google Scholar
  10. 10.
    Halim, N.A., Noor, N.F.M.: Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface. In: The 22nd National Symposium on Mathematical Sciences (SKSM22): Strengthening Research and Collaboration of Mathematical Sciences in Malaysia. Vol. 1682. AIP Publishing (2015)Google Scholar
  11. 11.
    Sheikholeslami, M., Mustafa, M.T., Ganji, D.D.: Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iran. J. Sci. Technol. 39A3(Special issue), 433–440 (2015)Google Scholar
  12. 12.
    Raju, C.S.K., Sandeep, N., JayachandraBabu, M.: Stagnation point flow towards horizontal and exponentially stretching/shrinking cylinders. J. Adv. Phys. 5(3), 207–213 (2016)CrossRefGoogle Scholar
  13. 13.
    Cattaneo, C.: Sullaconduzionedelcalore. AttidelSeminario Matematicoe Fisico dell Universitadi Modenae Reggio Emilia 3, 83–101 (1948)Google Scholar
  14. 14.
    Christov, C.I.: On frame in different formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Straughan, B.: Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 53, 95–98 (2010)CrossRefMATHGoogle Scholar
  16. 16.
    Hayat, T., Imtiaz, M., Alsaedi, A., Almezal, S.: On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. J. Mag. Mat. 401, 296–303 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Mahapatra, T.R., Gupta, A.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38, 517–521 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Pop, S., Grosan, T., Pop, I.: Radiation effects on the flow near the stagnation point of a stretching sheet. Tech. Mech. 25, 100–106 (2004)Google Scholar
  19. 19.
    Sharma, P., Singh, G.: Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet. J. Appl. Fluid Mech. 2, 13–21 (2009)Google Scholar
  20. 20.
    Dinarvand, S., Abbassi, A., Hosseini, R., Pop, I.: Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder. Therm. Sci. 9, 549–561 (2015). doi: 10.2298/TSCI120225165D CrossRefGoogle Scholar
  21. 21.
    Ibrahim, S.M., Gangadhar, K., Bhaskar Reddy, N.: Radiation and mass transfer effects on MHD oscillatory flow in a channel filled with porous medium in the presence of chemical reaction. J. Appl. Fluid Mech. 8(3), 529–537 (2015)CrossRefGoogle Scholar
  22. 22.
    Raju, C.S.K., Sandeep, N.: Heat and mass transfer in 3D non-Newtonian nano and Ferro fluids over a bidirectional stretching surface. Int. J. Eng. Res. Afr. 21, 33–51 (2016)CrossRefGoogle Scholar
  23. 23.
    Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S.: Magnetohydrodynamic flow of Sisko fluid over a stretching cylinder with variable thermal conductivity: a numerical study. AIP Adv. 6, 025316 (2016). doi: 10.1063/1.4942476 ADSCrossRefGoogle Scholar
  24. 24.
    Rashad, A.M., Mallikarjuna, B., Chamkha, A.J., Hariprasad Raju, S.: Thermophoresis effect on heat and mass transfer from a rotating cone in a porous medium with thermal radiation. Afrika Matematika 27(7), 1409–1424 (2016)Google Scholar
  25. 25.
    Raju, C.S.K., Sandeep, N., Malvandi, A.: Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J. Mol. Liquids 221, 108–115 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. S. K. Raju
    • 1
  • P. Sanjeevi
    • 2
  • M. C. Raju
    • 3
  • S. M. Ibrahim
    • 4
  • G. Lorenzini
    • 5
  • E. Lorenzini
    • 6
  1. 1.Department of MathematicsGarden City UniversityBangaloreIndia
  2. 2.School of Computer Science and EngineeringVIT UniversityVelloreIndia
  3. 3.Department of MathematicsAnnamacharya Institute of Science and TechnologyRajampetIndia
  4. 4.Dept. of MathematicsGITAM UniversityVisakhapatnamIndia
  5. 5.Department of Engineering and ArchitectureUniversity of ParmaParmaItaly
  6. 6.Department of Industrial EngineeringAlma Mater Studiorum-University of BolognaBolognaItaly

Personalised recommendations