Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1313–1333 | Cite as

Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

  • Sebastian Glane
  • Felix A. Reich
  • Wolfgang H. Müller
Original Article


This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.


Permanent magnet Magnetic material model Affine-linear model Ferromagnetism Boundary element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrens, J., Geveci, B., Law, C.: Paraview: an end-user tool for large-data visualization. In: Hansen, C.D., Johnson, C.R. (eds.) Visualization Handbook, chap 36, pp. 717–731. Butterworth-Heinemann, Burlington (2005). doi: 10.1016/B978-012387582-2/50038-1 CrossRefGoogle Scholar
  2. 2.
    Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The fenics project version 1.5. Arch Numer Softw 3(100), 9–23 (2015). doi: 10.11588/ans.2015.100.20553 Google Scholar
  3. 3.
    Andjelic, Z., Of, G., Steinbach, O., Urthaler, P.: Boundary element methods for magnetostatic field problems: a critical view. Comput Vis Sci 14(3), 117–130 (2011). doi: 10.1007/s00791-011-0167-3 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arfken, G.B., Weber, H.J.: Mathematical methods for physicist, 6th edn. Elsevier Academic Press, Amsterdam (2005)MATHGoogle Scholar
  5. 5.
    Austin, F.E.: Examples in Magnetism, 2nd edn. Hanover (1916)Google Scholar
  6. 6.
    Becker, R.: Electromagnetic fields and interactions. Dover Publications, Mineola (2013)Google Scholar
  7. 7.
    Black, N.H., Davis, H.N.: Practical physics. Macmillan, New York (1913)Google Scholar
  8. 8.
    Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühlig, H.: Taschenbuch der Mathematik, 9th edn. Edition Harri Deutsch. Verlag Europa Lehrmittel, Haan-Gruiten (2013)MATHGoogle Scholar
  9. 9.
    Burg, K., Haf, H., Wille, F., Meister, A.: Partielle Differentialgleichungen und funktionalanalytische Grundlagen, 5th edn. Vieweg + Teubner, Wiesbaden (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, G., Zhou, J.: Boundary element methods. Computational mathematics and applications. Academic Press, London (1992)Google Scholar
  11. 11.
    Coey, J.M.D.: Magnetism and magnetic materials. Cambridge University Press, Cambridge (2009)Google Scholar
  12. 12.
    Furlani, E.P.: Permanent magnet and electromechanical devices. Academic Press Series in Electromagnetism. Academic Press, San Diego (2001). doi: 10.1016/B978-012269951-1/50005-X Google Scholar
  13. 13.
    Guhlke, C.: Theorie der elektrochemischen Grenzfläche. Ph.D. thesis, Technische Universität Berlin (2015)Google Scholar
  14. 14.
    Jackson, J.D.: Classical electrodynamics, 2nd edn. Wiley, New York (1975)MATHGoogle Scholar
  15. 15.
    Jiles, D.: Introduction to magnetism and magnetic materials, 3rd edn. CRC Press, Boca Raton (2015)Google Scholar
  16. 16.
    Kovetz, A.: Electromagnetic theory. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  17. 17.
    Mladenovic, A.N., Aleksic, S.R.: Determination of magnetic field for different shaped permanent magnets. In: 7th international symposium on electromagnetic compatibility and electromagnetic ecology, pp. 84–87. IEEE (2007). doi: 10.1109/EMCECO.2007.4371653
  18. 18.
    Müller, W.H.: An expedition to continuum theory. Solid mechanics and its applications. Springer, New York (2014)CrossRefGoogle Scholar
  19. 19.
    Patsyk, A.: Computational physics project (2016).
  20. 20.
    Rjasanow, S., Steinbach, O.: The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, Berlin (2007)MATHGoogle Scholar
  21. 21.
    Sauter, S.A., Schwab, C.: Boundary element methods. Springer Series in Computational Mathematics, vol. 39. Springer, Berlin (2011)CrossRefGoogle Scholar
  22. 22.
    Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with bem++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015). doi: 10.1145/2590830 MathSciNetMATHGoogle Scholar
  23. 23.
    Truesdell, C.A., Toupin, R.: The classical field theories. In: Handbuch der Physik, Bd. III/1, pp. 226–793; appendix, pp. 794–858. Springer, Berlin (1960). With an appendix on tensor fields by J. L. EricksenGoogle Scholar
  24. 24.
    Wolfram Research, Inc.: Mathematica. Champaign, Illinois (2015). Version 10.1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sebastian Glane
    • 1
  • Felix A. Reich
    • 1
  • Wolfgang H. Müller
    • 1
  1. 1.Institut für Mechanik, Kontinuumsmechanik und MaterialtheorieTechnische Universität BerlinBerlinGermany

Personalised recommendations