Skip to main content
Log in

Finite-speed heat propagation as a consequence of microstructural changes

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We show how a general description of microstructural changes in a macroscopically rigid conductor implies finite-speed propagation of temperature variations. In this way, we interpret once again Fourier’s paradox as a result of an insufficient representation of the structure of matter. The result is independent of the type of the material microstructure, provided that its changes are influenced by temperature variations. With the present treatment, we indicate a possible view on an old problem, already analyzed from different perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Both, S., Czél, B., Fülop, T., Gróf, Gy, Gyenis, Á., Kovács, C., Ván, P., Verhás, J.: Deviation from Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41, 41–48 (2015)

    Google Scholar 

  2. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  4. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)

    Article  ADS  MATH  Google Scholar 

  5. Dunn, J.E., Serrin, J.: On the thermomechanics of intertistitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MATH  Google Scholar 

  6. Ekoue, F., Fouache d’Halloy, A., Gigon, D., Plantamp, G., Zajdman, E.: Maxwell–Cattaneo regularization of heat equation. Int. J. Math. Comp. Phys. Electr. Comp. Eng. 7, 772–775 (2013)

    Google Scholar 

  7. Focardi, M., Mariano, P.M., Spadaro, E.N.: Multi-value microstructural descriptors for complex materials: analysis of ground states. Arch. Ration. Mech. Anal. 215, 899–933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frankel, J.I., Vick, B., Ösizik, M.N.: Flux formulation of hyperbolic heat conduction. J. Appl. Phys. 58, 3340–3345 (1985)

    Article  ADS  Google Scholar 

  9. Giovine, P.: Nonclassical thermomechanics of granular materials. Math. Phys. Anal. Geom. 2, 179–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transfer 83, 613–620 (2015)

    Article  Google Scholar 

  11. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2002)

    Article  Google Scholar 

  12. Mariano, P.M.: Mechanics of material mutations. Adv. Appl. Mech. 47, 1–91 (2014)

    Article  Google Scholar 

  13. Mariano, P.M., Modica, G.: Ground states in complex bodies. ESAIM Control Optim. Calc. Var. 15, 377–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maxwell, J.C.: On the dynamic theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1867)

    Article  Google Scholar 

  15. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  16. Müller, I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26, 118–141 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41, 319–332 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  19. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monoatomic Gas. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  20. Straugham, B.: Heat Waves. Springer, New York (2011)

    Book  Google Scholar 

  21. Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transfer 15, 369–371 (1972)

    Article  Google Scholar 

  22. Ván, P., Fülöp, T.: Universality in heat conduction theory—weakly nonlocal thermodynamics. Ann. Phys. 524, 470–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vernotte, P.: Les paradoxes de la théorie continue de l’ équation de la chaleur. C. R. Acad. Sci. Paris 246, 3154–3155 (1958)

    MathSciNet  MATH  Google Scholar 

  24. Weymann, H.D.: Finite speed of propagation in heat conduction, diffusion and viscous shear motion. Am. J. Phys. 35, 488–496 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maria Mariano.

Additional information

Communicated by Andreas Öchsner.

Dedicated to Tommaso Ruggeri on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, P.M. Finite-speed heat propagation as a consequence of microstructural changes. Continuum Mech. Thermodyn. 29, 1241–1248 (2017). https://doi.org/10.1007/s00161-017-0577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0577-7

Keywords

Navigation