Advertisement

Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1291–1311 | Cite as

A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

  • Vamshi Krishna Chillara
Original Article

Abstract

We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

Keywords

Nonlinear ultrasonics Damage prognosis Structural health monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank Prof. Cliff J Lissenden and Prof. Francesco Costanzo, Penn State, for their invaluable comments on an earlier version of the manuscript.

References

  1. 1.
    Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123 (2009)CrossRefGoogle Scholar
  2. 2.
    Breazeale, M., Thompson, D.: Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3(5), 77 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    Breazeale, M., Ford, J.: Ultrasonic studies of the nonlinear behavior of solids. J. Appl. Phys. 36(11), 3486 (1965)ADSCrossRefGoogle Scholar
  4. 4.
    Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36(1), 229 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev. 144(2), 469 (1966a)ADSCrossRefGoogle Scholar
  6. 6.
    Hikata, A., Sewell Jr., F., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. II. Phys. Rev. 151(2), 442 (1966b)ADSCrossRefGoogle Scholar
  7. 7.
    Blackburn, B.D., Breazeale, M.: Nonlinear distortion of ultrasonic waves in small crystalline samples. J. Acoust. Soc. Am. 76(6), 1755 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487 (2001)CrossRefGoogle Scholar
  9. 9.
    Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2043), 757 (2004)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Cantrell, J.H.: Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86(11), 1539 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Baby, S., Nagaraja Kowmudi, B., Omprakash, C., Satyanarayana, D., Balasubramaniam, K., Kumar, V.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scr. Mater. 59(8), 818 (2008)CrossRefGoogle Scholar
  12. 12.
    Matlack, K., Wall, J., Kim, J.Y., Qu, J., Jacobs, L., Viehrig, H.W.: Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111(5), 054911 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Matlack, K.H., Kim, J.Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34(1), 1–23 (2015)CrossRefGoogle Scholar
  14. 14.
    Delsanto, P.P.: Universality of Nonclassical Nonlinearity. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    Van Den Abeele, K.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. J. Res. Nondestruct. Eval. 12(1), 31 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Van Den Abeele, K.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Van Den Abeele, K.E., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). Ndt & E Int. 34(4), 239 (2001)CrossRefGoogle Scholar
  18. 18.
    Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P., Johnson, P.A.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Toupin, R., Bernstein, B.: Sound waves in deformed perfectly elastic materials. Acoustoelastic effect. J. Acoust. Soc. Am. 33(2), 216 (1961)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Chillara, V.K., Lissenden, C.J.: Review of nonlinear ultrasonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55(1), 011002 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    De Lima, W., Hamilton, M.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265(4), 819 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Deng, M.: Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85(6), 3051 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Srivastava, A., Lanza di Scalea, F.: On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323(3), 932 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Matsuda, N., Biwa, S.: Phase and group velocity matching for cumulative harmonic generation in Lamb waves. J. Appl. Phys. 109(9), 094903 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Chillara, V.K., Lissenden, C.J.: Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111(12), 124909 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, Y., Chillara, V.K., Lissenden, C.J.: On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332(19), 4517 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Chillara, V.K., Lissenden, C.J.: Nonlinear guided waves in plates: a numerical perspective. Ultrasonics 54(6), 1553 (2014)CrossRefGoogle Scholar
  28. 28.
    Chillara, V.K., Lissenden, C.J.: Nonlinear guided waves in plates undergoing localized microstructural changes. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation: Volume 34, vol. 1650, pp. 1561–1569. AIP Publishing, New York (2015)Google Scholar
  29. 29.
    Leamy, M.J., Autrusson, T.B., Staszewski, W.J., Uhl, T., Packo, P.: Local computational strategies for predicting wave propagation in nonlinear media. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 90,641J–90,641J. International Society for Optics and Photonics (2014)Google Scholar
  30. 30.
    Rauter, N., Lammering, R.: Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities. Smart Mater. Struct. 24(4), 045027 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90(2), 021901 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Deng, M., Pei, J.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90(12), 121902 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Lissenden, C., Liu, Y., Choi, G., Yao, X.: Effect of localized microstructure evolution on higher harmonic generation of guided waves. J. Nondestruct. Eval. 33(2), 178 (2014)CrossRefGoogle Scholar
  34. 34.
    Lissenden, C.J., Liu, Y., Chillara, V.K., Choi, G., Yao, X.: Nonlinear guided waves for continuous material microstructure state awareness. In: ASME 2014 International Mechanical Engineering Congress and Exposition, pp. V013T16A033–V013T16A033. American Society of Mechanical Engineers (2014)Google Scholar
  35. 35.
    Rauter, N., Lammering, R.: Impact damage detection in composite structures considering nonlinear Lamb wave propagation. Mech. Adv. Mater. Struct. 22(1–2), 44 (2015)CrossRefGoogle Scholar
  36. 36.
    Hong, M., Su, Z., Lu, Y., Sohn, H., Qing, X.: Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mech. Syst. Signal Process. 60, 182 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Hong, M., Mao, Z., Todd, M.D., Su, Z.: Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites. Mech. Syst. Signal Process. 82, 448–460 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Eshelby, J.: Dislocations as a cause of mechanical damping in metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 197(1050), 396 (1949)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Granato, A., Lücke, K.: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27(6), 583 (1956)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Xiang, Y., Deng, M., Xuan, F.Z., Liu, C.J.: Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys. J. Appl. Phys. 111(10), 104905 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Xiang, Y., Deng, M., Xuan, F.Z.: Creep damage characterization using nonlinear ultrasonic guided wave method: a mesoscale model. J. Appl. Phys. 115(4), 044914 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Nazarov, V.E., Sutin, A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102(6), 3349 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    Zhao, Y., Qiu, Y., Jacobs, L.J., Qu, J.: Frequency-dependent tensile and compressive effective moduli of elastic solids with randomly distributed two-dimensional microcracks. J. Appl. Mech. 82(8), 081006 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Chillara, V.K., Lissenden, C.J.: Towards a micro-mechanics based understanding of ultrasonic higher harmonic generation. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 94,380R–94,380R. International Society for Optics and Photonics (2015)Google Scholar
  45. 45.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. J Non-Equilibrium Thermodyn. 19(3), 217–249 (1994)ADSzbMATHGoogle Scholar
  46. 46.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part II. J Non-Equilibrium Thermodyn. 19(3), 250–289 (1994)ADSzbMATHGoogle Scholar
  47. 47.
    Mudunuru, M.K., Nakshatrala, K.: A framework for coupled deformation-diffusion analysis with application to degradation/healing. Int. J. Numer. Methods Eng. 89(9), 1144 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Xu, C., Mudunuru, M., Nakshatrala, K.: Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions. Contin. Mech. Thermodyn. 28(6), 1847 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Chillara, V.K., Lissenden, C.J.: On some aspects of material behavior relating microstructure and ultrasonic higher harmonic generation. Int. J. Eng. Sci. 94, 59 (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ogden, R., Roxburgh, D.: A pseudo-elastic model for the Mullins effect in filled rubber: In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 455, pp. 2861–2877. The Royal Society (1999)Google Scholar
  51. 51.
    Rajagopal, K., Srinivasa, A., Wineman, A.: On the shear and bending of a degrading polymer beam. Int. J. Plast. 23(9), 1618 (2007)CrossRefzbMATHGoogle Scholar
  52. 52.
    Lazopoulos, K., Ogden, R.: Nonlinear elasticity theory with discontinuous internal variables. Math. Mech. Solids 3(1), 29 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rajagopal, K., Srinivasa, A.: On the thermomechanics of materials that have multiple natural configurations, part I: viscoelasticity and classical plasticity. Z Angew. Math. Phys. 55(5), 861 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Landau, L.D., Lifshitz, E.: Theory of Elasticity, vol. 3. Course of Theoretical Physics. Pergamon Press, Tarrytown, NY, USA (1986)zbMATHGoogle Scholar
  55. 55.
    Chillara, V.K., Lissenden, C.J.: Constitutive model for third harmonic generation in elastic solids. Int. J. Non-Linear Mech. 82, 69 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18(3), 035003 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Kube, C.M., Turner, J.A.: Acoustic nonlinearity parameters for transversely isotropic polycrystalline materials. J. Acoust. Soc. Am. 137(6), 3272 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Kube, C.M., Turner, J.A., Chimenti, D.E., Bond, L.J.: Voigt, Reuss, Hill, and self-consistent techniques for modeling ultrasonic scattering. In: AIP Conference Proceedings, vol. 1650, pp. 926–934. AIP (2015)Google Scholar
  59. 59.
    Kube, C.M.: Elastic anisotropy of crystals. AIP Adv. 6(9), 095209 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Zhao, J., Chillara, V.K., Ren, B., Cho, H., Qiu, J., Lissenden, C.J.: Second harmonic generation in composites: theoretical and numerical analyses. J. Appl. Phys. 119(6), 064902 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Kachanov, L.: Introduction to Continuum Damage Mechanics, vol. 10. Springer, Berlin (2013)zbMATHGoogle Scholar
  62. 62.
    Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80(2), 233 (1984)CrossRefGoogle Scholar
  63. 63.
    Chaboche, J.L.: Continuum damage mechanics: part II. Damage growth, crack initiation, and crack growth. J. Appl. Mech. 55(1), 65 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (Outside the USA) 2017

Authors and Affiliations

  1. 1.Materials Physics and Applications, MPA 11Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations